Abstract. In the same spirit of the classical Leau–Fatou flower theorem, we prove the existence of a petal, with vertex at the Wolff point, for a holomorphic self-map f of the open unit disc ∆ ⊂ C of parabolic type. The result is obtained in the framework of two interesting dynamical situations which require different kinds of regularity of f at the Wolff point τ: f of non-automorphism type and Re(f′′ (τ)) > 0, or f injective of automorphism type, f ∈ C3+ǫ(τ) and Re(f′′ (τ)) = 0.

Boundary construction of petals at the Wolff point in the parabolic case / C. BISI; G. GENTILI. - In: JOURNAL D'ANALYSE MATHEMATIQUE. - ISSN 0021-7670. - STAMPA. - 104:(2008), pp. 1-11. [10.1007/s11854-008-0013-9]

Boundary construction of petals at the Wolff point in the parabolic case

GENTILI, GRAZIANO
2008

Abstract

Abstract. In the same spirit of the classical Leau–Fatou flower theorem, we prove the existence of a petal, with vertex at the Wolff point, for a holomorphic self-map f of the open unit disc ∆ ⊂ C of parabolic type. The result is obtained in the framework of two interesting dynamical situations which require different kinds of regularity of f at the Wolff point τ: f of non-automorphism type and Re(f′′ (τ)) > 0, or f injective of automorphism type, f ∈ C3+ǫ(τ) and Re(f′′ (τ)) = 0.
2008
104
1
11
C. BISI; G. GENTILI
File in questo prodotto:
File Dimensione Formato  
petali9.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 130.12 kB
Formato Adobe PDF
130.12 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/211055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact