Abstract. In the same spirit of the classical Leau–Fatou flower theorem, we prove the existence of a petal, with vertex at the Wolff point, for a holomorphic self-map f of the open unit disc ∆ ⊂ C of parabolic type. The result is obtained in the framework of two interesting dynamical situations which require different kinds of regularity of f at the Wolff point τ: f of non-automorphism type and Re(f′′ (τ)) > 0, or f injective of automorphism type, f ∈ C3+ǫ(τ) and Re(f′′ (τ)) = 0.
Boundary construction of petals at the Wolff point in the parabolic case / C. BISI; G. GENTILI. - In: JOURNAL D'ANALYSE MATHEMATIQUE. - ISSN 0021-7670. - STAMPA. - 104:(2008), pp. 1-11. [10.1007/s11854-008-0013-9]
Boundary construction of petals at the Wolff point in the parabolic case
GENTILI, GRAZIANO
2008
Abstract
Abstract. In the same spirit of the classical Leau–Fatou flower theorem, we prove the existence of a petal, with vertex at the Wolff point, for a holomorphic self-map f of the open unit disc ∆ ⊂ C of parabolic type. The result is obtained in the framework of two interesting dynamical situations which require different kinds of regularity of f at the Wolff point τ: f of non-automorphism type and Re(f′′ (τ)) > 0, or f injective of automorphism type, f ∈ C3+ǫ(τ) and Re(f′′ (τ)) = 0.File | Dimensione | Formato | |
---|---|---|---|
petali9.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
130.12 kB
Formato
Adobe PDF
|
130.12 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.