The microdialysis technique with one or two probes was used to investigate the modulation of cortically projecting cholinergic neurons by glutamatergic input in the rat in vivo. Male albino Wistar rats (250-300 g) were used. Under chloral hydrate anaesthesia microdialysis membranes were positioned in the parietal cortex, nucleus basalis magnocellularis (NBM) or medial septum. Acetylcholine was assayed using high-performance liquid chromatography (HPLC) with electrochemical detection while GABA was detected using HPLC with fluorimetric detection after derivatization of the amino acid with o-phthalaldehyde. Septo-cortical neurons were retrogradely labelled with fluoro-gold. Double labelling with choline acetyltransferase (ChAT) immunoreactivity was performed to identify these neurons. Our main findings were that: (i) i.c.v. administration of the NMDA antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 1-5 nmol) increased cortical acetylcholine outflow; (ii) local administration of CPP (100 microM) to the cortex had no effect on cortical acetylcholine outflow; (iii) local administration of CPP (100 microM) to the NBM decreased cortical acetylcholine outflow; (iv) local administration of CPP (100-200 microM) to the septum increased cortical GABA and acetylcholine outflow; (v) administration of muscimol to the septum prevented the effect of CPP on cortical acetylcholine outflow; (vi) retrograde tracing with fluoro-gold labelled cell bodies in the medial septum; (vii) septal fluoro-gold-positive neurons were not ChAT-immunoreactive. Our in vivo neurochemical results, in combination with retrograde tracing and immunohistochemistry, indicate that the cortically projecting cholinergic system is indirectly regulated by a glutamatergic input via a polysynaptic GABAergic circuitry located in the septum.

Glutamatergic modulation of cortical acetylcholine release in the rat: a combined in vivo microdialysis, retrograde tracing and immunohistochemical study / M.G. Giovannini; L. Giovannelli; L. Bianchi; R. Kalfin; G. Pepeu. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - STAMPA. - 9:(1997), pp. 1678-1689. [10.1111/j.1460-9568.1997.tb01525.x]

Glutamatergic modulation of cortical acetylcholine release in the rat: a combined in vivo microdialysis, retrograde tracing and immunohistochemical study

GIOVANNINI, MARIA GRAZIA;GIOVANNELLI, LISA;PEPEU, GIANCARLO
1997

Abstract

The microdialysis technique with one or two probes was used to investigate the modulation of cortically projecting cholinergic neurons by glutamatergic input in the rat in vivo. Male albino Wistar rats (250-300 g) were used. Under chloral hydrate anaesthesia microdialysis membranes were positioned in the parietal cortex, nucleus basalis magnocellularis (NBM) or medial septum. Acetylcholine was assayed using high-performance liquid chromatography (HPLC) with electrochemical detection while GABA was detected using HPLC with fluorimetric detection after derivatization of the amino acid with o-phthalaldehyde. Septo-cortical neurons were retrogradely labelled with fluoro-gold. Double labelling with choline acetyltransferase (ChAT) immunoreactivity was performed to identify these neurons. Our main findings were that: (i) i.c.v. administration of the NMDA antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 1-5 nmol) increased cortical acetylcholine outflow; (ii) local administration of CPP (100 microM) to the cortex had no effect on cortical acetylcholine outflow; (iii) local administration of CPP (100 microM) to the NBM decreased cortical acetylcholine outflow; (iv) local administration of CPP (100-200 microM) to the septum increased cortical GABA and acetylcholine outflow; (v) administration of muscimol to the septum prevented the effect of CPP on cortical acetylcholine outflow; (vi) retrograde tracing with fluoro-gold labelled cell bodies in the medial septum; (vii) septal fluoro-gold-positive neurons were not ChAT-immunoreactive. Our in vivo neurochemical results, in combination with retrograde tracing and immunohistochemistry, indicate that the cortically projecting cholinergic system is indirectly regulated by a glutamatergic input via a polysynaptic GABAergic circuitry located in the septum.
1997
9
1678
1689
M.G. Giovannini; L. Giovannelli; L. Bianchi; R. Kalfin; G. Pepeu
File in questo prodotto:
File Dimensione Formato  
1997 Eur J Neurosci.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/211910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 39
social impact