Let F be a coherent sheaf over a compact reduced complex space Xt L(F) the linear fibre space associated with F, Sk(E) the fcth symmetric power of F. We show that if the zero-section of L(f) is exceptional, then lf(Xf E [removed] 1 and sufficiently large k. Using this result, we deduce moreover that Supp F is a Moisezon space.
Espaces fibrés linéaires faiblement négatifs sur un espace complexe / V. ANCONA. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 215:(1976), pp. 45-61. [10.1090/S0002-9947-1976-0430332-3]
Espaces fibrés linéaires faiblement négatifs sur un espace complexe
ANCONA, VINCENZO
1976
Abstract
Let F be a coherent sheaf over a compact reduced complex space Xt L(F) the linear fibre space associated with F, Sk(E) the fcth symmetric power of F. We show that if the zero-section of L(f) is exceptional, then lf(Xf E [removed] 1 and sufficiently large k. Using this result, we deduce moreover that Supp F is a Moisezon space.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.