We study calibrated complex structures on the generalized tangent bundle of a Riemannian manifold M and their relationship to the Riemannian geometry of M. In particular we introduce a concept of integrability of such structures and we prove that integrability conditions are strictly related to the existence of certain Codazzi tensors on M.
Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold / A. NANNICINI. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - ELETTRONICO. - 56:(2006), pp. 903-916. [10.1016/j.geomphys.2005.05.006]
Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold
NANNICINI, ANTONELLA
2006
Abstract
We study calibrated complex structures on the generalized tangent bundle of a Riemannian manifold M and their relationship to the Riemannian geometry of M. In particular we introduce a concept of integrability of such structures and we prove that integrability conditions are strictly related to the existence of certain Codazzi tensors on M.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
gentanbundle.1.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
156.83 kB
Formato
Adobe PDF
|
156.83 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.