Immunoanalytical techniques have found widespread use due to the characteristics of specificity and wide applicability for many analytes, from large polymer antigens, to simple haptens, and even single atoms. Electrochemical sensors offer benefits of technical simplicity, speed and convenience via direct transduction to electronic equipment. Together, these two systems offer the possibility of a convenient, ubiquitous assay technique with high selectivity. However, they are still not widely used, mainly due to the complexity of the associated immunoassay methodologies. A separation-free immunoanalytical technique is described here, which has allowed for the analysis of atrazine in real time and in both quasi-equilibrium and stirred batch configurations. It illustrated that determinations as low as 0.13 microM (28 ppb) could be made using equilibrium incubation with an analytical range of 0.1-10 microM. Measurements could be made between 1 and 10 mM within several minutes using a real-time, stirred batch method. This system offers the potential for fast, simple, cost-effective biosensors for the analysis of many substances of environmental, biomedical and pharmaceutical concern.

Amperometric separation-free immunosensor for real-time environmental monitoring / A. J. Killard; L. Micheli; K. Grennan; M. Franek; V. Kolar; D. Moscone; I. Palchetti; M. R. Smyth. - In: ANALYTICA CHIMICA ACTA. - ISSN 0003-2670. - STAMPA. - 427:(2001), pp. 173-180. [10.1016/s0003-2670(00)01015-1]

Amperometric separation-free immunosensor for real-time environmental monitoring

PALCHETTI, ILARIA;
2001

Abstract

Immunoanalytical techniques have found widespread use due to the characteristics of specificity and wide applicability for many analytes, from large polymer antigens, to simple haptens, and even single atoms. Electrochemical sensors offer benefits of technical simplicity, speed and convenience via direct transduction to electronic equipment. Together, these two systems offer the possibility of a convenient, ubiquitous assay technique with high selectivity. However, they are still not widely used, mainly due to the complexity of the associated immunoassay methodologies. A separation-free immunoanalytical technique is described here, which has allowed for the analysis of atrazine in real time and in both quasi-equilibrium and stirred batch configurations. It illustrated that determinations as low as 0.13 microM (28 ppb) could be made using equilibrium incubation with an analytical range of 0.1-10 microM. Measurements could be made between 1 and 10 mM within several minutes using a real-time, stirred batch method. This system offers the potential for fast, simple, cost-effective biosensors for the analysis of many substances of environmental, biomedical and pharmaceutical concern.
2001
427
173
180
A. J. Killard; L. Micheli; K. Grennan; M. Franek; V. Kolar; D. Moscone; I. Palchetti; M. R. Smyth
File in questo prodotto:
File Dimensione Formato  
AnalCimActa 427 2001.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 110.08 kB
Formato Adobe PDF
110.08 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/218737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 45
social impact