ABSTRACT: In the paper it is shown that a convex positive homogeneous polynomial on C^n such that u = log P is plurisubharmonic and satisfying (dd^c u)^n on C^n-{0} is necessarily a homogeneous polynomial of bidegree (k, k). This answer positively to a question of D. Burns for convex polynomials. The proof is based on a prolongation argument for foliations in complex geodesics through a given point of convex domains.

Polynomial solution of the complex homogeneous Monge-Ampère equation / G. PATRIZIO; KALKA M.. - In: MICHIGAN MATHEMATICAL JOURNAL. - ISSN 0026-2285. - STAMPA. - 52:(2004), pp. 243-251. [10.1307/mmj/1091112073]

Polynomial solution of the complex homogeneous Monge-Ampère equation

PATRIZIO, GIORGIO;
2004

Abstract

ABSTRACT: In the paper it is shown that a convex positive homogeneous polynomial on C^n such that u = log P is plurisubharmonic and satisfying (dd^c u)^n on C^n-{0} is necessarily a homogeneous polynomial of bidegree (k, k). This answer positively to a question of D. Burns for convex polynomials. The proof is based on a prolongation argument for foliations in complex geodesics through a given point of convex domains.
2004
52
243
251
G. PATRIZIO; KALKA M.
File in questo prodotto:
File Dimensione Formato  
PolynomialSolutions(1).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 107.91 kB
Formato Adobe PDF
107.91 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/220642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact