The notion of symplectic reduction has been generalized to manifolds endowed with other structures, in particular to quaternion-K ̈hler manifolds, namely Riemannian manifolds with holonomy in Sp(n)Sp(1). In this work we prove that the only complete quaternion-K ̈hler manifold with positive scalar curvature obtainable as a quaternion-K ̈hler quotient by a circle action is the complex Grassmannian Gr2 (Cn ).

S^1-QUOTIENTS OF QUATERNION-KAEHLER MANIFOLDS / F. BATTAGLIA. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 124:(1996), pp. 2185-2191.

S^1-QUOTIENTS OF QUATERNION-KAEHLER MANIFOLDS

BATTAGLIA, FIAMMETTA
1996

Abstract

The notion of symplectic reduction has been generalized to manifolds endowed with other structures, in particular to quaternion-K ̈hler manifolds, namely Riemannian manifolds with holonomy in Sp(n)Sp(1). In this work we prove that the only complete quaternion-K ̈hler manifold with positive scalar curvature obtainable as a quaternion-K ̈hler quotient by a circle action is the complex Grassmannian Gr2 (Cn ).
1996
124
2185
2191
F. BATTAGLIA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/2216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact