In this paper we associate a semigroup to a locally maximal subset of complete controllability, i.e., a local control set. This fundamental semigroup is based on equivalence classes under homotopies in the set of trajectories. It reflects the structure of the set of closed (trajectory) loops in the local control set. We discuss the relations between different local control sets and prove a Van Kampen-type theorem for their unions and intersections.
Fundamental semigroups for local control sets / F. COLONIUS; L. SAN MARTIN; M. SPADINI. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 185 (suppl.):(2006), pp. S69-S91. [10.1007/s10231-004-0137-1]
Fundamental semigroups for local control sets
SPADINI, MARCO
2006
Abstract
In this paper we associate a semigroup to a locally maximal subset of complete controllability, i.e., a local control set. This fundamental semigroup is based on equivalence classes under homotopies in the set of trajectories. It reflects the structure of the set of closed (trajectory) loops in the local control set. We discuss the relations between different local control sets and prove a Van Kampen-type theorem for their unions and intersections.File | Dimensione | Formato | |
---|---|---|---|
ColonisSanMartinSpadini-AnnMat-FundamentaSemigroupForLocalControlSets.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
384.16 kB
Formato
Adobe PDF
|
384.16 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.