In this paper we associate a semigroup to a locally maximal subset of complete controllability, i.e., a local control set. This fundamental semigroup is based on equivalence classes under homotopies in the set of trajectories. It reflects the structure of the set of closed (trajectory) loops in the local control set. We discuss the relations between different local control sets and prove a Van Kampen-type theorem for their unions and intersections.

Fundamental semigroups for local control sets / F. COLONIUS; L. SAN MARTIN; M. SPADINI. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 185 (suppl.):(2006), pp. S69-S91. [10.1007/s10231-004-0137-1]

Fundamental semigroups for local control sets

SPADINI, MARCO
2006

Abstract

In this paper we associate a semigroup to a locally maximal subset of complete controllability, i.e., a local control set. This fundamental semigroup is based on equivalence classes under homotopies in the set of trajectories. It reflects the structure of the set of closed (trajectory) loops in the local control set. We discuss the relations between different local control sets and prove a Van Kampen-type theorem for their unions and intersections.
2006
185 (suppl.)
S69
S91
F. COLONIUS; L. SAN MARTIN; M. SPADINI
File in questo prodotto:
File Dimensione Formato  
ColonisSanMartinSpadini-AnnMat-FundamentaSemigroupForLocalControlSets.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 384.16 kB
Formato Adobe PDF
384.16 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/223306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact