In neurodegenerative diseases, an increased number of neuronal nitric oxide synthase (nNOS)-positive neurons was reported, but nothing is known on which are the neurons induced to express nNOS. Argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and nNOS act in the L-arginine–NO–L-citrulline cycle permitting a correct NO production. In the brain, nNOS-positive neurons co-expressing ASS were known, while those co-expressing ASL were not demonstrated. We investigated by immunohistochemistry the presence of these types of neurons in the rat striatum to verify whether there was a correlation between their changes due to neurotoxic insults and animal survival. Transient ischemia, a neurodegenerative insult model, was induced in rat brain by 2 h of middle cerebral artery occlusion. The striatum, the core of ischemia, was examined at 24, 72 and 144 h after reperfusion and compared with that of rats in normal condition. ASS, ASL and nNOS-positive neurons, some of the latter also expressing ASS and ASL, were present both in normal and ischemic conditions. At 24 h after reperfusion, the number of the nNOS-positive neurons and the percentage of those co-expressing ASS and ASL were significantly increased in the animals with a longer survival and at 144 h after ischemia there was an almost complete restore of the number and/or percentage of these neurons. We hypothesize that the neurons induced to express nNOS were the ASS- and ASL-positive ones and that the neurons co-expressing nNOS, ASS and ASL, since having the enzymes necessary to maintain a correct NO production, might protect from neurotoxic insults.
Transient ischemia increases neuronal nitric oxide synthase, argininosuccinate synthetase and argininosuccinate lyase co-expression in rat striatal neurons / E. BIZZOCO; MG VANNUCCHI; MS FAUSSONE-PELLEGRINI. - In: EXPERIMENTAL NEUROLOGY. - ISSN 0014-4886. - ELETTRONICO. - 204:(2007), pp. 252-259.
Transient ischemia increases neuronal nitric oxide synthase, argininosuccinate synthetase and argininosuccinate lyase co-expression in rat striatal neurons
E. BIZZOCO;MG VANNUCCHI;MS FAUSSONE-PELLEGRINI
2007
Abstract
In neurodegenerative diseases, an increased number of neuronal nitric oxide synthase (nNOS)-positive neurons was reported, but nothing is known on which are the neurons induced to express nNOS. Argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and nNOS act in the L-arginine–NO–L-citrulline cycle permitting a correct NO production. In the brain, nNOS-positive neurons co-expressing ASS were known, while those co-expressing ASL were not demonstrated. We investigated by immunohistochemistry the presence of these types of neurons in the rat striatum to verify whether there was a correlation between their changes due to neurotoxic insults and animal survival. Transient ischemia, a neurodegenerative insult model, was induced in rat brain by 2 h of middle cerebral artery occlusion. The striatum, the core of ischemia, was examined at 24, 72 and 144 h after reperfusion and compared with that of rats in normal condition. ASS, ASL and nNOS-positive neurons, some of the latter also expressing ASS and ASL, were present both in normal and ischemic conditions. At 24 h after reperfusion, the number of the nNOS-positive neurons and the percentage of those co-expressing ASS and ASL were significantly increased in the animals with a longer survival and at 144 h after ischemia there was an almost complete restore of the number and/or percentage of these neurons. We hypothesize that the neurons induced to express nNOS were the ASS- and ASL-positive ones and that the neurons co-expressing nNOS, ASS and ASL, since having the enzymes necessary to maintain a correct NO production, might protect from neurotoxic insults.File | Dimensione | Formato | |
---|---|---|---|
Vannucchi MG Exp Neurol 2007b.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
961.76 kB
Formato
Adobe PDF
|
961.76 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.