We discuss the stability issue for Calderon's inverse conductivity problem, also known as Electrical Impedance Tomography. It is well known that this problem is severely ill-posed. In this paper we prove that if it is a-priori known that the conductivity is piecewise constant with a bounded number of unknown values, then a Lipschitz stability estimate holds.

LIPSCHITZ STABILITY FOR INVERSE CONDUCTIVITY PROBLEM / G. ALESSANDRINI; S. VESSELLA. - In: ADVANCES IN APPLIED MATHEMATICS. - ISSN 0196-8858. - STAMPA. - 35:(2005), pp. 207-241. [10.1016/j.aam.2004.12.002]

LIPSCHITZ STABILITY FOR INVERSE CONDUCTIVITY PROBLEM

VESSELLA, SERGIO
2005

Abstract

We discuss the stability issue for Calderon's inverse conductivity problem, also known as Electrical Impedance Tomography. It is well known that this problem is severely ill-posed. In this paper we prove that if it is a-priori known that the conductivity is piecewise constant with a bounded number of unknown values, then a Lipschitz stability estimate holds.
2005
35
207
241
G. ALESSANDRINI; S. VESSELLA
File in questo prodotto:
File Dimensione Formato  
advancesapllmath.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 248.67 kB
Formato Adobe PDF
248.67 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/225918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 130
social impact