Let G be a permutation group on a finite set Omega. If G does not involve A(n) for n greater than or equal to 5, then there exist two disjoint subsets of Ohm such that no Sylow subgroup of G stabilizes both and four disjoint subsets of Ohm whose stabilizers in G intersect trivially.

ORBITS OF A PERMUTATION GROUP ON THE POWER SET / S. DOLFI. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - STAMPA. - 75:(2000), pp. 321-327. [10.1007/s000130050510]

ORBITS OF A PERMUTATION GROUP ON THE POWER SET

DOLFI, SILVIO
2000

Abstract

Let G be a permutation group on a finite set Omega. If G does not involve A(n) for n greater than or equal to 5, then there exist two disjoint subsets of Ohm such that no Sylow subgroup of G stabilizes both and four disjoint subsets of Ohm whose stabilizers in G intersect trivially.
2000
75
321
327
S. DOLFI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/2310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
social impact