We present an integer valued degree theory for locally compact perturbations of Fredholm maps of index zero between (open sets in) Banach spaces (quasi-Fredholm maps, for short). The construction is based on the Brouwer degree theory and on the notion of orientation for nonlinear Fredholm maps given by the authors in some previous papers. The theory includes in a natural way the celebrated Leray-Schauder degree.

A degree theory for locally compact perturbations of Fredholm maps in Banach spaces / P. Benevieri; M. Furi. - In: ABSTRACT AND APPLIED ANALYSIS. - ISSN 1085-3375. - STAMPA. - Art. ID 64764:(2006), pp. Art. ID 64764----. [10.1155/AAA/2006/64764]

A degree theory for locally compact perturbations of Fredholm maps in Banach spaces

BENEVIERI, PIERLUIGI;FURI, MASSIMO
2006

Abstract

We present an integer valued degree theory for locally compact perturbations of Fredholm maps of index zero between (open sets in) Banach spaces (quasi-Fredholm maps, for short). The construction is based on the Brouwer degree theory and on the notion of orientation for nonlinear Fredholm maps given by the authors in some previous papers. The theory includes in a natural way the celebrated Leray-Schauder degree.
2006
Art. ID 64764
Art. ID 64764
---
P. Benevieri; M. Furi
File in questo prodotto:
File Dimensione Formato  
A degree theory etc.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 207.9 kB
Formato Adobe PDF
207.9 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/23543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact