In this paper, we investigate a text sparsification technique based on the identification of local maxima. In particular, we first show that looking for an order of the alphabet symbols that minimizes the number of local maxima in a given string is an Np-hard problem. Successively, we describe how the local maxima sparsification technique can be used to filter the access to unstructured texts. Finally, we experimentally show that this approach can be successfully used in order to create a space efficient index for searching a DNA sequence as quickly as a full index.

TEXT SPARSIFICATION VIA LOCAL MAXIMA / P. CRESCENZI; A. DEL LUNGO; R. GROSSI; E. LODI; L. PAGLI; G. ROSSI. - STAMPA. - (2000), pp. 290-301. (Intervento presentato al convegno TWENTIETH CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE) [10.1007/3-540-44450-5_23].

TEXT SPARSIFICATION VIA LOCAL MAXIMA

CRESCENZI, PIERLUIGI;
2000

Abstract

In this paper, we investigate a text sparsification technique based on the identification of local maxima. In particular, we first show that looking for an order of the alphabet symbols that minimizes the number of local maxima in a given string is an Np-hard problem. Successively, we describe how the local maxima sparsification technique can be used to filter the access to unstructured texts. Finally, we experimentally show that this approach can be successfully used in order to create a space efficient index for searching a DNA sequence as quickly as a full index.
2000
FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science
TWENTIETH CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE
P. CRESCENZI; A. DEL LUNGO; R. GROSSI; E. LODI; L. PAGLI; G. ROSSI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/237700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact