Structural and geometric photoisomerization of bilirubin bound to human serum albumin was investigated. Solutions were irradiated with monochromatic light emitted by an Ar ion laser, the 457.9, 488.0 and 514.5 nm wavelengths being selected. Photoproducts were separated and analysed by h.p.l.c. Visible-absorption spectra of pure ZZ-bilirubin, ZE-bilirubin and lumirubin in the eluent were registered in the 350-550 nm region by collecting single fractions by h.p.l.c. Wavelength-dependence of bilirubin photoconversion was studied within photoequilibrium and up to a large decrement of the total concentration. Experiments were performed in aerobic and anaerobic conditions in order to assess the contribution of the photo-oxidation to the overall process. The presence of O2 was found to increase the rate of bilirubin degradation and unexpectedly to favour lumirubin production. The ability of 514.5 nm irradiation to induce bilirubin cyclization was definitively confirmed.

Bilirubin photoconversion induced by monochromatic laser radiation. Comparison between aerobic and anaerobic experiments in vitro / M. MIGLIORINI; P. GALVAN; G. SBRANA; G. DONZELLI; C. VECCHI. - In: BIOCHEMICAL JOURNAL. - ISSN 0264-6021. - STAMPA. - 256:(1988), pp. 841-846.

Bilirubin photoconversion induced by monochromatic laser radiation. Comparison between aerobic and anaerobic experiments in vitro.

MIGLIORINI, MARIA GRAZIA;GALVAN, PAOLA;DONZELLI, GIAN PAOLO;VECCHI, CORRADO
1988

Abstract

Structural and geometric photoisomerization of bilirubin bound to human serum albumin was investigated. Solutions were irradiated with monochromatic light emitted by an Ar ion laser, the 457.9, 488.0 and 514.5 nm wavelengths being selected. Photoproducts were separated and analysed by h.p.l.c. Visible-absorption spectra of pure ZZ-bilirubin, ZE-bilirubin and lumirubin in the eluent were registered in the 350-550 nm region by collecting single fractions by h.p.l.c. Wavelength-dependence of bilirubin photoconversion was studied within photoequilibrium and up to a large decrement of the total concentration. Experiments were performed in aerobic and anaerobic conditions in order to assess the contribution of the photo-oxidation to the overall process. The presence of O2 was found to increase the rate of bilirubin degradation and unexpectedly to favour lumirubin production. The ability of 514.5 nm irradiation to induce bilirubin cyclization was definitively confirmed.
1988
256
841
846
M. MIGLIORINI; P. GALVAN; G. SBRANA; G. DONZELLI; C. VECCHI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/24340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact