Abstract. For plurisubharmonic solutions of the complex homogeneous Monge–Ampère equation whose level sets are hypersurfaces of finite type, in dimension 2, it is shown that the Monge– Ampère foliation is defined even at points of higher degeneracy. The result is applied to provide a positive answer to a question of Burns on homogeneous polynomials whose logarithms satisfy the complex Monge–Ampère equation and to generalize the work of P. M. Wong on the classification of complete weighted circular domains.

Finite Type Monge-Ampère Foliations / G. PATRIZIO; M. KALKA. - In: ADVANCES IN GEOMETRY. - ISSN 1615-715X. - STAMPA. - 8:(2008), pp. 491-502. [10.1515/ADVGEOM.2008.031]

Finite Type Monge-Ampère Foliations

PATRIZIO, GIORGIO;
2008

Abstract

Abstract. For plurisubharmonic solutions of the complex homogeneous Monge–Ampère equation whose level sets are hypersurfaces of finite type, in dimension 2, it is shown that the Monge– Ampère foliation is defined even at points of higher degeneracy. The result is applied to provide a positive answer to a question of Burns on homogeneous polynomials whose logarithms satisfy the complex Monge–Ampère equation and to generalize the work of P. M. Wong on the classification of complete weighted circular domains.
2008
8
491
502
G. PATRIZIO; M. KALKA
File in questo prodotto:
File Dimensione Formato  
FiniteTypeMongeAmpere(8).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 201.77 kB
Formato Adobe PDF
201.77 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/244138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact