Some new affine invariant stability results for the Hammer's problem.We prove that the area distance between two convex bodies K and K′ with the same parallel X-rays in a set of n mutually non parallel directions is bounded from above by the area of their intersection, times a constant depending only on n. Equality holds if and only if K is a regular n-gon, and K′ is K rotated by π/n about its center, up to affine transformations.
Titolo: | STABILITÀ INVARIANTE PER AFFINITÀ PER IL PROBLEMA DI HAMMER- COMUNICAZIONE |
Autori di Ateneo: | |
Autori: | P. DULIO; LONGINETTI, MARCO; C. PERI; VENTURI, ADRIANA |
Data di pubblicazione: | 2006 |
Titolo del congresso: | MEETING GNAMPA: DISUGUAGLIANZE ANALITICHE E GEOMETRICHE IN CONVESSITÀ |
Luogo del congresso: | GAETA |
Abstract: | Some new affine invariant stability results for the Hammer's problem.We prove that the area distance between two convex bodies K and K′ with the same parallel X-rays in a set of n mutually non parallel directions is bounded from above by the area of their intersection, times a constant depending only on n. Equality holds if and only if K is a regular n-gon, and K′ is K rotated by π/n about its center, up to affine transformations. |
Handle: | http://hdl.handle.net/2158/24848 |
Appare nelle tipologie: | 4a - Articolo in atti di congresso |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Gaeta_20-01-2006[1].pdf | Altro | DRM non definito | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.