Resting on a suitable base of the quotients of the lambda-series for the free groups on r generators, we get, for p odd, a class of TH-p-groups (n)G(r) with arbitrary large derived length. We prove that every TH-p-group G with r generators and exponent p(n) is a quotient of (n)G(r) and a product of m cyclic groups, where p(m) = Omega(1)(G)\. At last we describe the TH-p-groups of exponent p(2).
p-groups with all the elements of order p in the center / D. BUBBOLONI; CORSI TANI G. - In: ALGEBRA COLLOQUIUM. - ISSN 1005-3867. - STAMPA. - 11(2):(2004), pp. 181-190.
p-groups with all the elements of order p in the center
BUBBOLONI, DANIELA;
2004
Abstract
Resting on a suitable base of the quotients of the lambda-series for the free groups on r generators, we get, for p odd, a class of TH-p-groups (n)G(r) with arbitrary large derived length. We prove that every TH-p-group G with r generators and exponent p(n) is a quotient of (n)G(r) and a product of m cyclic groups, where p(m) = Omega(1)(G)\. At last we describe the TH-p-groups of exponent p(2).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
algcoll.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
212.54 kB
Formato
Adobe PDF
|
212.54 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.