This study was carried out on pentobarbital sodium-anesthetized, spontaneously breathing cats to address the hypothesis that Bötzinger complex (BötC) neurons are involved in the production of the cough motor pattern induced by mechanical stimulation of the tracheobronchial tree. Phrenic nerve and abdominal muscle activities as well as intratracheal pressure were monitored; single-unit extracellular recordings from BötC neurons (n = 87) were performed. The majority of augmenting expiratory (E-Aug) neurons encountered (n = 47) displayed excitatory responses during the expulsive phases of coughing in parallel with the main components of the abdominal bursts and the corresponding increases in tracheal pressure. We also encountered E-Aug neurons markedly depressed up to complete inhibition during coughing (n = 14) as well as E-Aug neurons assuming a decremental pattern without any increase or even with some reduction in their peak activity (n = 15). During the expiratory thrusts, most decrementing expiratory neurons (n = 7) presented excitatory responses, whereas others were depressed (n = 3) or completely inhibited (n = 1). The results are consistent with the view that these neurons are involved in the generation of the cough motor pattern and, in particular, that some BötC E-Aug neurons convey excitatory drive to caudal expiratory neurons and, hence, to expiratory motoneurons.

Discharge patterns of Bötzinger complex neurons during cough in the cat / F. BONGIANNI; MUTOLO D; FONTANA G.A; T. PANTALEO. - In: AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY. - ISSN 0363-6119. - STAMPA. - 274:(1998), pp. 1015-1024.

Discharge patterns of Bötzinger complex neurons during cough in the cat.

BONGIANNI, FULVIA;MUTOLO, DONATELLA;FONTANA, GIOVANNI;PANTALEO, TITO
1998

Abstract

This study was carried out on pentobarbital sodium-anesthetized, spontaneously breathing cats to address the hypothesis that Bötzinger complex (BötC) neurons are involved in the production of the cough motor pattern induced by mechanical stimulation of the tracheobronchial tree. Phrenic nerve and abdominal muscle activities as well as intratracheal pressure were monitored; single-unit extracellular recordings from BötC neurons (n = 87) were performed. The majority of augmenting expiratory (E-Aug) neurons encountered (n = 47) displayed excitatory responses during the expulsive phases of coughing in parallel with the main components of the abdominal bursts and the corresponding increases in tracheal pressure. We also encountered E-Aug neurons markedly depressed up to complete inhibition during coughing (n = 14) as well as E-Aug neurons assuming a decremental pattern without any increase or even with some reduction in their peak activity (n = 15). During the expiratory thrusts, most decrementing expiratory neurons (n = 7) presented excitatory responses, whereas others were depressed (n = 3) or completely inhibited (n = 1). The results are consistent with the view that these neurons are involved in the generation of the cough motor pattern and, in particular, that some BötC E-Aug neurons convey excitatory drive to caudal expiratory neurons and, hence, to expiratory motoneurons.
1998
274
1015
1024
F. BONGIANNI; MUTOLO D; FONTANA G.A; T. PANTALEO
File in questo prodotto:
File Dimensione Formato  
3_AJPtosseBotC1998.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 501 kB
Formato Adobe PDF
501 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/250357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact