The respiratory role of the Bötzinger complex (Böt. c.) was investigated in alpha-chloralose-urethane or pentobarbitone anesthetized rabbits by means of microinjections of DL-homocysteic acid (DLH). The animals were either spontaneously breathing or vagotomized, paralysed and artificially ventilated. Both phrenic and abdominal activities were monitored; extracellular recordings from medullary respiration-related neurons were performed. Unilateral microinjections (5-30 nl) of DLH (160 mM) into the Böt. c., at sites where intense expiratory activity with an augmenting discharge pattern was encountered, provoked mild or moderate depressant effects on inspiratory activity characterized by decreases in frequency as well as in peak amplitude and rate of rise of phrenic nerve discharge. Stronger depressant effects up to complete apnea were consistently obtained in response to bilateral microinjections. Concomitant depressant effects on the activity of both expiratory motoneurons and expiration-related (ER) neurons of the caudal ventral respiratory group (cVRG) were observed. At variance with previous findings in the cat, the results indicate that chemical activation of Böt. c. augmenting ER neurons may exert inhibitory influences not only on inspiratory activity, but also on cVRG ER neurons and, hence, on expiratory motoneurons. The functional role of the Böt. c. in the control of respiration deserves further investigations; present findings suggest that the rabbit may profitably be used for such a purpose.

Depressant effects on inspiratory and expiratory activity produced by chemical activation of Bötzinger complex neurons in the rabbit / F. BONGIANNI; MUTOLO D; T. PANTALEO. - In: BRAIN RESEARCH. - ISSN 0006-8993. - STAMPA. - 749:(1997), pp. 1-9.

Depressant effects on inspiratory and expiratory activity produced by chemical activation of Bötzinger complex neurons in the rabbit.

BONGIANNI, FULVIA;MUTOLO, DONATELLA;PANTALEO, TITO
1997

Abstract

The respiratory role of the Bötzinger complex (Böt. c.) was investigated in alpha-chloralose-urethane or pentobarbitone anesthetized rabbits by means of microinjections of DL-homocysteic acid (DLH). The animals were either spontaneously breathing or vagotomized, paralysed and artificially ventilated. Both phrenic and abdominal activities were monitored; extracellular recordings from medullary respiration-related neurons were performed. Unilateral microinjections (5-30 nl) of DLH (160 mM) into the Böt. c., at sites where intense expiratory activity with an augmenting discharge pattern was encountered, provoked mild or moderate depressant effects on inspiratory activity characterized by decreases in frequency as well as in peak amplitude and rate of rise of phrenic nerve discharge. Stronger depressant effects up to complete apnea were consistently obtained in response to bilateral microinjections. Concomitant depressant effects on the activity of both expiratory motoneurons and expiration-related (ER) neurons of the caudal ventral respiratory group (cVRG) were observed. At variance with previous findings in the cat, the results indicate that chemical activation of Böt. c. augmenting ER neurons may exert inhibitory influences not only on inspiratory activity, but also on cVRG ER neurons and, hence, on expiratory motoneurons. The functional role of the Böt. c. in the control of respiration deserves further investigations; present findings suggest that the rabbit may profitably be used for such a purpose.
1997
749
1
9
F. BONGIANNI; MUTOLO D; T. PANTALEO
File in questo prodotto:
File Dimensione Formato  
2_BRrabbitDLH1997.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/250358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact