We prove a global bifurcation result for T-periodic solutions of the T-periodic delay differential equation x'(t)=λf(t,x(t),x(t−1)) depending on a non-negative real parameter. The approach is based on the fixed point index theory for maps on ANRs.

Global Branches of Periodic Solutions for Forced Delay Differential Equations on Compact Manifolds / P. Benevieri; A. Calamai; M. Furi; M.P. Pera. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 233:(2007), pp. 404-416. [10.1016/j.jde.2006.10.001]

Global Branches of Periodic Solutions for Forced Delay Differential Equations on Compact Manifolds

BENEVIERI, PIERLUIGI;FURI, MASSIMO;PERA, MARIA PATRIZIA
2007

Abstract

We prove a global bifurcation result for T-periodic solutions of the T-periodic delay differential equation x'(t)=λf(t,x(t),x(t−1)) depending on a non-negative real parameter. The approach is based on the fixed point index theory for maps on ANRs.
2007
233
404
416
Goal 17: Partnerships for the goals
P. Benevieri; A. Calamai; M. Furi; M.P. Pera
File in questo prodotto:
File Dimensione Formato  
Global_branches.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 241.37 kB
Formato Adobe PDF
241.37 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/250443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact