In this article, the design of a dual-band PA developed in SiGe HBT technology and its system level investigation are presented. Starting from an extensive nonlinear characterization at the device level, by which the optimum load conditions was inferred, an optimized amplifier capable to operate simultaneously at 2.45 and 3.5 GHz was designed. The designed amplifier exhibits in single-band mode operation 9.3 dBm and 13.4 dBm output power (1 dB compression point) at 2.45 GHz and 3.5 GHz, respectively. When working under simultaneous channel amplifications, an higher reduction of the 1 dB compression point at 3.5 GHz, compared with the one at 2.45 GHz, is observed; this reflects in a more significant degradations of system level performance such as the error vector magnitude. The investigation provided in this article and the conclusions suggest new concepts and possible new system architectures for the development of the next generation of multi-band transceiver front-end.
From Device characterization to System Level Analysis of Dual Band PA Design in SiGe Technology / P. COLANTONIO; F. GIANNINI; R. GIOFR; L. PIAZZON; V. CAMARCHIA; M. PIROLA; A. CIDRONALI; I. MAGRINI; G. MANES; R. SCHOLZ; D. KNOL. - In: INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING. - ISSN 1096-4290. - STAMPA. - 5:(2008), pp. 552-563. [10.1002/mmce.20331]
From Device characterization to System Level Analysis of Dual Band PA Design in SiGe Technology
CIDRONALI, ALESSANDRO;MAGRINI, IACOPO;MANES, GIANFRANCO;
2008
Abstract
In this article, the design of a dual-band PA developed in SiGe HBT technology and its system level investigation are presented. Starting from an extensive nonlinear characterization at the device level, by which the optimum load conditions was inferred, an optimized amplifier capable to operate simultaneously at 2.45 and 3.5 GHz was designed. The designed amplifier exhibits in single-band mode operation 9.3 dBm and 13.4 dBm output power (1 dB compression point) at 2.45 GHz and 3.5 GHz, respectively. When working under simultaneous channel amplifications, an higher reduction of the 1 dB compression point at 3.5 GHz, compared with the one at 2.45 GHz, is observed; this reflects in a more significant degradations of system level performance such as the error vector magnitude. The investigation provided in this article and the conclusions suggest new concepts and possible new system architectures for the development of the next generation of multi-band transceiver front-end.File | Dimensione | Formato | |
---|---|---|---|
Wiley RFMICAE2008 dual-band SiGe.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
505.24 kB
Formato
Adobe PDF
|
505.24 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.