Force generation and motion in skeletal muscle result from interaction between actin and myosin myofilaments through the cyclical formation and rupture of the actomyosin bonds, the cross-bridges, in the overlap region of the sarcomeres. Actomyosin bond properties were investigated here in single intact muscle fibers by using dynamic force spectroscopy. The force needed to forcibly detach the cross-bridge ensemble in the half-sarcomere (hs) was measured in a range of stretching velocity between 3.4 x 10(3) nm.hs(-1).s(-1) or 3.3 fiber length per second (l(0)s(-1)) and 6.1 x 10(4) nm.hs(-1).s(-1) or 50 l(0).s(-1) during tetanic force development. The rupture force of the actomyosin bond increased linearly with the logarithm of the loading rate, in agreement with previous experiments on noncovalent single bond and with Bell theory [Bell GI (1978) Science 200:618-627]. The analysis permitted calculation of the actomyosin interaction length, x(beta) and the dissociation rate constant for zero external load, k(0). Mean x(beta) was 1.25 nm, a value similar to that reported for single actomyosin bond under rigor condition. Mean k(0) was 20 s(-1), a value about twice as great as that reported in the literature for isometric force relaxation in the same type of muscle fibers. These experiments show, for the first time, that force spectroscopy can be used to reveal the properties of the individual cross-bridge in intact skeletal muscle fibers.

Characterization of actomyosin bond properties in intact skeletal muscle by force spectroscopy / B. COLOMBINI; M. BAGNI; G. ROMANO; G. CECCHI. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - STAMPA. - 104(22):(2007), pp. 9284-9289. [10.1073/pnas.0611070104]

Characterization of actomyosin bond properties in intact skeletal muscle by force spectroscopy

COLOMBINI, BARBARA;BAGNI, MARIA ANGELA;ROMANO, GIOVANNI;CECCHI, GIOVANNI
2007

Abstract

Force generation and motion in skeletal muscle result from interaction between actin and myosin myofilaments through the cyclical formation and rupture of the actomyosin bonds, the cross-bridges, in the overlap region of the sarcomeres. Actomyosin bond properties were investigated here in single intact muscle fibers by using dynamic force spectroscopy. The force needed to forcibly detach the cross-bridge ensemble in the half-sarcomere (hs) was measured in a range of stretching velocity between 3.4 x 10(3) nm.hs(-1).s(-1) or 3.3 fiber length per second (l(0)s(-1)) and 6.1 x 10(4) nm.hs(-1).s(-1) or 50 l(0).s(-1) during tetanic force development. The rupture force of the actomyosin bond increased linearly with the logarithm of the loading rate, in agreement with previous experiments on noncovalent single bond and with Bell theory [Bell GI (1978) Science 200:618-627]. The analysis permitted calculation of the actomyosin interaction length, x(beta) and the dissociation rate constant for zero external load, k(0). Mean x(beta) was 1.25 nm, a value similar to that reported for single actomyosin bond under rigor condition. Mean k(0) was 20 s(-1), a value about twice as great as that reported in the literature for isometric force relaxation in the same type of muscle fibers. These experiments show, for the first time, that force spectroscopy can be used to reveal the properties of the individual cross-bridge in intact skeletal muscle fibers.
2007
104(22)
9284
9289
B. COLOMBINI; M. BAGNI; G. ROMANO; G. CECCHI
File in questo prodotto:
File Dimensione Formato  
PNAS07.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 420.31 kB
Formato Adobe PDF
420.31 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/251042
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact