In this paper a notion of difference function f is introduced for real-valued, non-negative and log-concave functions f defined in the n dimensional Euclidean space. The difference function represents a functional analog of the difference body K + (−K) of a convex body K. The main result is a sharp inequality which bounds the integral of f from above in terms of the integral of f. Equality conditions are characterized.

Functional inequalities related to the Rogers-Shephard inequality / A. COLESANTI. - In: MATHEMATIKA. - ISSN 0025-5793. - STAMPA. - 53:(2006), pp. 81-101.

Functional inequalities related to the Rogers-Shephard inequality

COLESANTI, ANDREA
2006

Abstract

In this paper a notion of difference function f is introduced for real-valued, non-negative and log-concave functions f defined in the n dimensional Euclidean space. The difference function represents a functional analog of the difference body K + (−K) of a convex body K. The main result is a sharp inequality which bounds the integral of f from above in terms of the integral of f. Equality conditions are characterized.
2006
53
81
101
A. COLESANTI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/251067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact