We discuss order of convergence for subdivision algorithms, in the scalar-valued and the vector-valued case. In order to find the generic order, the usual definition of convergence order is extended, refering to a proper quasi interpolant operator whose representation on polynomial spaces can be constructively determined with recourse to properties of the subdivision mask. Assuming stability and smoothness of the limit functions, the approximation order of the quasi interpolant operator determines the order of convergence of subdivision.

Concerning Order of Convergence for Subdivision / C. CONTI; K. JETTER. - In: NUMERICAL ALGORITHMS. - ISSN 1017-1398. - STAMPA. - 36:(2004), pp. 345-363. [10.1007/s11075-004-3896-2]

Concerning Order of Convergence for Subdivision

CONTI, COSTANZA;
2004

Abstract

We discuss order of convergence for subdivision algorithms, in the scalar-valued and the vector-valued case. In order to find the generic order, the usual definition of convergence order is extended, refering to a proper quasi interpolant operator whose representation on polynomial spaces can be constructively determined with recourse to properties of the subdivision mask. Assuming stability and smoothness of the limit functions, the approximation order of the quasi interpolant operator determines the order of convergence of subdivision.
2004
36
345
363
C. CONTI; K. JETTER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/251153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact