We consider the averaging principle for stochastic reaction-diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical approach to finite-dimensional problems of this type in the case of SPDE's.

Averaging principle for a class of stochastic reaction-diffusion equations / S. CERRAI; M. FREILDIN. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN 0178-8051. - STAMPA. - 144:(2009), pp. 137-177. [10.1007/s00440-008-0144-z]

Averaging principle for a class of stochastic reaction-diffusion equations

CERRAI, SANDRA;
2009

Abstract

We consider the averaging principle for stochastic reaction-diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical approach to finite-dimensional problems of this type in the case of SPDE's.
2009
144
137
177
S. CERRAI; M. FREILDIN
File in questo prodotto:
File Dimensione Formato  
ptrf5.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 428.7 kB
Formato Adobe PDF
428.7 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/251492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 142
  • ???jsp.display-item.citation.isi??? 132
social impact