We present a general framework to design Godunov-type schemes for multidimensional ideal magnetohydrodynamic (MHD) systems, having the divergence-free relation and the related properties of the magnetic field B as built-in conditions. Our approach mostly relies on the constrained transport (CT) discretization technique for the magnetic field components, originally developed for the linear induction equation, which assures [∇.B]num=0 and its preservation in time to within machine accuracy in a finite-volume setting. We show that the CT formalism, when fully exploited, can be used as a general guideline to design the reconstruction procedures of the B vector field, to adapt standard upwind procedures for the momentum and energy equations, avoiding the onset of numerical monopoles of O(1) size, and to formulate approximate Riemann solvers for the induction equation. This general framework will be named here upwind constrained transport (UCT). To demonstrate the versatility of our method, we apply it to a variety of schemes, which are finally validated numerically and compared: a novel implementation for the MHD case of the second-order Roe-type positive scheme by Liu and Lax [J. Comput. Fluid Dyn. 5 (1996) 133], and both the second- and third-order versions of a central-type MHD scheme presented by Londrillo and Del Zanna [Astrophys. J. 530 (2000) 508], where the basic UCT strategies have been first outlined.

On the divergence-free condition in Gudonov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method / P. LONDRILLO; L. DEL ZANNA. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - STAMPA. - 195:(2004), pp. 17-48. [10.1016/j.jcp.2003.09.016]

On the divergence-free condition in Gudonov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method

DEL ZANNA, LUCA
2004

Abstract

We present a general framework to design Godunov-type schemes for multidimensional ideal magnetohydrodynamic (MHD) systems, having the divergence-free relation and the related properties of the magnetic field B as built-in conditions. Our approach mostly relies on the constrained transport (CT) discretization technique for the magnetic field components, originally developed for the linear induction equation, which assures [∇.B]num=0 and its preservation in time to within machine accuracy in a finite-volume setting. We show that the CT formalism, when fully exploited, can be used as a general guideline to design the reconstruction procedures of the B vector field, to adapt standard upwind procedures for the momentum and energy equations, avoiding the onset of numerical monopoles of O(1) size, and to formulate approximate Riemann solvers for the induction equation. This general framework will be named here upwind constrained transport (UCT). To demonstrate the versatility of our method, we apply it to a variety of schemes, which are finally validated numerically and compared: a novel implementation for the MHD case of the second-order Roe-type positive scheme by Liu and Lax [J. Comput. Fluid Dyn. 5 (1996) 133], and both the second- and third-order versions of a central-type MHD scheme presented by Londrillo and Del Zanna [Astrophys. J. 530 (2000) 508], where the basic UCT strategies have been first outlined.
2004
195
17
48
P. LONDRILLO; L. DEL ZANNA
File in questo prodotto:
File Dimensione Formato  
londrillo04.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/251863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 197
  • ???jsp.display-item.citation.isi??? 193
social impact