In this paper we determine a closed formula for the number of convex permutominoes of size n. We reach this goal by providing a recursive generation of all convex permutominoes of size n+1 from the objects of size n, according to the ECO method, and then translating this construction into a system of functional equations satisfied by the generating function of convex permutominoes. As a consequence we easily obtain also the enumeration of some classes of convex polyominoes, including stack and directed convex permutominoes.

A closed formula for the number of convex permutominoes / F.DISANTO; A. FROSINI; R.PINZANI ; S.RINALDI. - In: ELECTRONIC JOURNAL OF COMBINATORICS. - ISSN 1077-8926. - ELETTRONICO. - 14:(2007), pp. 361-376.

A closed formula for the number of convex permutominoes

FROSINI, ANDREA;PINZANI, RENZO;
2007

Abstract

In this paper we determine a closed formula for the number of convex permutominoes of size n. We reach this goal by providing a recursive generation of all convex permutominoes of size n+1 from the objects of size n, according to the ECO method, and then translating this construction into a system of functional equations satisfied by the generating function of convex permutominoes. As a consequence we easily obtain also the enumeration of some classes of convex polyominoes, including stack and directed convex permutominoes.
2007
14
361
376
F.DISANTO; A. FROSINI; R.PINZANI ; S.RINALDI
File in questo prodotto:
File Dimensione Formato  
[20].pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 167.57 kB
Formato Adobe PDF
167.57 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/252482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact