Abstract Low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme involved in mitogenic signaling and cytoskeletal rearrangement after platelet-derived growth factor (PDGF) stimulation. Recently, we demonstrated that LMW-PTP is regulated by a redox mechanism involving the two cysteine residues of the catalytic site, which turn reversibly from reduced to oxidized state after PDGF stimulation. Since recent findings showed a decrease of intracellular reactive oxygen species in contact inhibited cells and a lower tyrosine phosphorylation level in dense cultures in comparison to sparse ones, we studied if the level of endogenous LMW-PTP is regulated by growth inhibition conditions, such as cell confluence and differentiation. Results show that both cell confluence and cell differentiation up-regulate LMW-PTP expression in C2C12 and PC12 cells. We demonstrate that during myogenesis LMW-PTP is regulated at translational level and that the protein accumulates at the plasma membrane. Furthermore, we showed that both myogenesis and cell-cell contact lead to a dramatic decrease of tyrosine phosphorylation level of PDGF receptor. In addition, we observed an increased association of the receptor with LMW-PTP during myogenesis. Herein, we demonstrate that myogenesis decreases the intracellular level of reactive oxygen species, as observed in dense cultures. As a consequence, LMW-PTP turns from oxidized to reduced form during muscle differentiation, increasing its activity in growth inhibition conditions such as differentiation. These data suggest that LMW-PTP plays a crucial role in physiological processes, which require cell growth arrest such as confluence and differentiation.

Low molecular weight protein-tyrosine phosphatase is involved in growth inhibition during cell differentiation / T. FIASCHI; P. CHIARUGI; F. BURICCHI; E. GIANNONI; L. TADDEI; D. TALINI; G. COZZI; S. ZECCHI; G. RAUGEI; G. RAMPONI. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 276(52):(2001), pp. 49156-49163.

Low molecular weight protein-tyrosine phosphatase is involved in growth inhibition during cell differentiation.

FIASCHI, TANIA;CHIARUGI, PAOLA;GIANNONI, ELISA;TADDEI, MARIA LETIZIA;ZECCHI, SANDRA;RAUGEI, GIOVANNI;RAMPONI, GIAMPIETRO
2001

Abstract

Abstract Low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme involved in mitogenic signaling and cytoskeletal rearrangement after platelet-derived growth factor (PDGF) stimulation. Recently, we demonstrated that LMW-PTP is regulated by a redox mechanism involving the two cysteine residues of the catalytic site, which turn reversibly from reduced to oxidized state after PDGF stimulation. Since recent findings showed a decrease of intracellular reactive oxygen species in contact inhibited cells and a lower tyrosine phosphorylation level in dense cultures in comparison to sparse ones, we studied if the level of endogenous LMW-PTP is regulated by growth inhibition conditions, such as cell confluence and differentiation. Results show that both cell confluence and cell differentiation up-regulate LMW-PTP expression in C2C12 and PC12 cells. We demonstrate that during myogenesis LMW-PTP is regulated at translational level and that the protein accumulates at the plasma membrane. Furthermore, we showed that both myogenesis and cell-cell contact lead to a dramatic decrease of tyrosine phosphorylation level of PDGF receptor. In addition, we observed an increased association of the receptor with LMW-PTP during myogenesis. Herein, we demonstrate that myogenesis decreases the intracellular level of reactive oxygen species, as observed in dense cultures. As a consequence, LMW-PTP turns from oxidized to reduced form during muscle differentiation, increasing its activity in growth inhibition conditions such as differentiation. These data suggest that LMW-PTP plays a crucial role in physiological processes, which require cell growth arrest such as confluence and differentiation.
2001
276(52)
49156
49163
T. FIASCHI; P. CHIARUGI; F. BURICCHI; E. GIANNONI; L. TADDEI; D. TALINI; G. COZZI; S. ZECCHI; G. RAUGEI; G. RAMPONI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/252841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact