In this paper we announce the development of a functional calculus for operators defined on quaternionic Banach spaces. The definition is based on a new notion of slice regularity and the key tools are a new resolvent operator and a new eigenvalue problem. This approach allows us to deal both with bounded and unbounded operators.

A functional calculus in a non commutative setting / F. COLOMBO; G. GENTILI; I. SABADINI; D. STRUPPA. - In: ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES. - ISSN 1935-9179. - ELETTRONICO. - 14:(2007), pp. 60-68.

A functional calculus in a non commutative setting

GENTILI, GRAZIANO;
2007

Abstract

In this paper we announce the development of a functional calculus for operators defined on quaternionic Banach spaces. The definition is based on a new notion of slice regularity and the key tools are a new resolvent operator and a new eigenvalue problem. This approach allows us to deal both with bounded and unbounded operators.
2007
14
60
68
F. COLOMBO; G. GENTILI; I. SABADINI; D. STRUPPA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/252912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact