For any convex n-gon P we consider the polygons obtained by dropping a vertex or an edge of P. The area distance of P to such (n − 1)-gons, divided by the area of P, is an affinely invariant functional on n-gons whose maximizers coincide with the affinely regular polygons. We provide a complete proof of this result. We extend these area functionals to planar convex bodies and we present connections with the affine isoperimetric inequality and parallel X-ray tomography.

Affinely regular polygons as extremals of area functionals / P. GRONCHI; M. LONGINETTI. - In: DISCRETE & COMPUTATIONAL GEOMETRY. - ISSN 0179-5376. - STAMPA. - 39:(2008), pp. 273-297. [10.1007/s00454-007-9010-5]

Affinely regular polygons as extremals of area functionals

GRONCHI, PAOLO;LONGINETTI, MARCO
2008

Abstract

For any convex n-gon P we consider the polygons obtained by dropping a vertex or an edge of P. The area distance of P to such (n − 1)-gons, divided by the area of P, is an affinely invariant functional on n-gons whose maximizers coincide with the affinely regular polygons. We provide a complete proof of this result. We extend these area functionals to planar convex bodies and we present connections with the affine isoperimetric inequality and parallel X-ray tomography.
2008
39
273
297
P. GRONCHI; M. LONGINETTI
File in questo prodotto:
File Dimensione Formato  
GronchiLonginetti2.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 291.38 kB
Formato Adobe PDF
291.38 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253012
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact