In this paper we extend a classical lower semicontinuity theorem by J. Serrin. We achieve this result by applying an approximation method for convex functions where, instead of supporting hyperplanes, certain maximal cones are considered. This also allows us to give the characterization of the class of functions that can be written as a countable supremum of strictly convex ones.

The common root of the geometric conditions in Serrin's lower semicontinuity theorem / M. GORI; F. MAGGI. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 184:(2005), pp. 95-114. [10.1007/s10231-003-0091-3]

The common root of the geometric conditions in Serrin's lower semicontinuity theorem

GORI, MICHELE;MAGGI, FRANCESCO
2005

Abstract

In this paper we extend a classical lower semicontinuity theorem by J. Serrin. We achieve this result by applying an approximation method for convex functions where, instead of supporting hyperplanes, certain maximal cones are considered. This also allows us to give the characterization of the class of functions that can be written as a countable supremum of strictly convex ones.
2005
184
95
114
M. GORI; F. MAGGI
File in questo prodotto:
File Dimensione Formato  
AnnMatPuraAppl184(2005)95-114.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 297.84 kB
Formato Adobe PDF
297.84 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact