In this paper we extend a classical lower semicontinuity theorem by J. Serrin. We achieve this result by applying an approximation method for convex functions where, instead of supporting hyperplanes, certain maximal cones are considered. This also allows us to give the characterization of the class of functions that can be written as a countable supremum of strictly convex ones.
The common root of the geometric conditions in Serrin's lower semicontinuity theorem / M. GORI; F. MAGGI. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 184:(2005), pp. 95-114. [10.1007/s10231-003-0091-3]
The common root of the geometric conditions in Serrin's lower semicontinuity theorem
GORI, MICHELE;MAGGI, FRANCESCO
2005
Abstract
In this paper we extend a classical lower semicontinuity theorem by J. Serrin. We achieve this result by applying an approximation method for convex functions where, instead of supporting hyperplanes, certain maximal cones are considered. This also allows us to give the characterization of the class of functions that can be written as a countable supremum of strictly convex ones.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AnnMatPuraAppl184(2005)95-114.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
297.84 kB
Formato
Adobe PDF
|
297.84 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.