Abstract: Let $\Omega\subset\mathbb C^2$ be a smoothly bounded domain. We prove that if $\partial \Omega$ contains a (small) smooth curve of points of infinity type, then the automorphism group $\Aut(\Omega)$ is compact. This result implies the Greene-Krantz conjecture for a special class of domains. The proof makes no use of scaling techniques.

The automorphism group of domains with boundary points of infinite type / M. LANDUCCI. - In: ILLINOIS JOURNAL OF MATHEMATICS. - ISSN 0019-2082. - STAMPA. - 48,3:(2004), pp. 875-885. [10.1215/ijm/1258131057]

The automorphism group of domains with boundary points of infinite type

LANDUCCI, MARIO
2004

Abstract

Abstract: Let $\Omega\subset\mathbb C^2$ be a smoothly bounded domain. We prove that if $\partial \Omega$ contains a (small) smooth curve of points of infinity type, then the automorphism group $\Aut(\Omega)$ is compact. This result implies the Greene-Krantz conjecture for a special class of domains. The proof makes no use of scaling techniques.
2004
48,3
875
885
M. LANDUCCI
File in questo prodotto:
File Dimensione Formato  
illinois2004.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 225.69 kB
Formato Adobe PDF
225.69 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact