Abstract: Let $\Omega\subset\mathbb C^2$ be a smoothly bounded domain. We prove that if $\partial \Omega$ contains a (small) smooth curve of points of infinity type, then the automorphism group $\Aut(\Omega)$ is compact. This result implies the Greene-Krantz conjecture for a special class of domains. The proof makes no use of scaling techniques.
The automorphism group of domains with boundary points of infinite type / M. LANDUCCI. - In: ILLINOIS JOURNAL OF MATHEMATICS. - ISSN 0019-2082. - STAMPA. - 48,3:(2004), pp. 875-885. [10.1215/ijm/1258131057]
The automorphism group of domains with boundary points of infinite type
LANDUCCI, MARIO
2004
Abstract
Abstract: Let $\Omega\subset\mathbb C^2$ be a smoothly bounded domain. We prove that if $\partial \Omega$ contains a (small) smooth curve of points of infinity type, then the automorphism group $\Aut(\Omega)$ is compact. This result implies the Greene-Krantz conjecture for a special class of domains. The proof makes no use of scaling techniques.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
illinois2004.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
225.69 kB
Formato
Adobe PDF
|
225.69 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.