A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows us to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.

Characterizing dynamics with covariant Lyapunov vectors / F. GINELLI; P. POGGI; A. TURCHI; H. CHATE'; R. LIVI, A. POLITI. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 99:(2007), pp. 130601-130604.

Characterizing dynamics with covariant Lyapunov vectors

LIVI, ROBERTO
2007

Abstract

A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows us to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.
2007
99
130601
130604
F. GINELLI; P. POGGI; A. TURCHI; H. CHATE'; R. LIVI, A. POLITI
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.99.130601.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 210.39 kB
Formato Adobe PDF
210.39 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact