Abstract: A quantitative sharp form of the classical isoperimetric inequality is proved, thus giving a positive answer to a conjecture by Hall. Precisely, we show that the difference between the perimeter of a set and the perimeter of an Euclidean ball with its same volume, bounds from above (in terms of a dimensional constant) the square of the distance (intended as the volume of the symmetric difference) of the set itself from the family of Euclidean balls.

The sharp quantitative isoperimetric inequality / N. FUSCO; F. MAGGI; A. PRATELLI. - In: ANNALS OF MATHEMATICS. - ISSN 0003-486X. - STAMPA. - 168:(2008), pp. 941-980. [10.4007/annals.2008.168.941]

The sharp quantitative isoperimetric inequality

MAGGI, FRANCESCO;
2008

Abstract

Abstract: A quantitative sharp form of the classical isoperimetric inequality is proved, thus giving a positive answer to a conjecture by Hall. Precisely, we show that the difference between the perimeter of a set and the perimeter of an Euclidean ball with its same volume, bounds from above (in terms of a dimensional constant) the square of the distance (intended as the volume of the symmetric difference) of the set itself from the family of Euclidean balls.
2008
168
941
980
N. FUSCO; F. MAGGI; A. PRATELLI
File in questo prodotto:
File Dimensione Formato  
Fusco Maggi Pratelli The sharp quantitative isoperimetric inequality (08).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 352.64 kB
Formato Adobe PDF
352.64 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 242
  • ???jsp.display-item.citation.isi??? 234
social impact