Abstract We continue our previous study of sharp Sobolev-type inequalities by means of optimal transport, started in (Maggi and Villani J. Geom. Anal. 15(1), 83–121 (2005)). In the present paper, we extend our results in various directions, including Gagliardo–Nirenberg, Faber–Krahn, logarithmic-Sobolev or Moser–Trudinger inequalities with trace terms. We also identify a class of domains for which there is no need for a trace term to cast the Sobolev inequality.

Balls have the worst best Sobolev inequalities. Part two: variants and extensions / F. MAGGI; C. VILLANI. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 31:(2008), pp. 47-74. [10.1007/s00526-007-0105-x]

Balls have the worst best Sobolev inequalities. Part two: variants and extensions

MAGGI, FRANCESCO;
2008

Abstract

Abstract We continue our previous study of sharp Sobolev-type inequalities by means of optimal transport, started in (Maggi and Villani J. Geom. Anal. 15(1), 83–121 (2005)). In the present paper, we extend our results in various directions, including Gagliardo–Nirenberg, Faber–Krahn, logarithmic-Sobolev or Moser–Trudinger inequalities with trace terms. We also identify a class of domains for which there is no need for a trace term to cast the Sobolev inequality.
2008
31
47
74
F. MAGGI; C. VILLANI
File in questo prodotto:
File Dimensione Formato  
Maggi Villani Balls have the worst best Sobolev inequalities Part II (08).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 345.87 kB
Formato Adobe PDF
345.87 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact