Abstract: In this paper we prove an integral representation formula for the relaxed functional of a scalar non parametric integral of the Calculus of Variations. Similar results were obtained by Dal Maso under the key assumption that the integrand is coercive in the gradient variable. Here we show that the same integral representation holds for a wide class of non coercive integrands, including for example the strictly convex ones.

On the relaxation on BV of certain non coercive integral functionals / F. MAGGI. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 10:(2003), pp. 477-489.

On the relaxation on BV of certain non coercive integral functionals

MAGGI, FRANCESCO
2003

Abstract

Abstract: In this paper we prove an integral representation formula for the relaxed functional of a scalar non parametric integral of the Calculus of Variations. Similar results were obtained by Dal Maso under the key assumption that the integrand is coercive in the gradient variable. Here we show that the same integral representation holds for a wide class of non coercive integrands, including for example the strictly convex ones.
2003
10
477
489
F. MAGGI
File in questo prodotto:
File Dimensione Formato  
Maggijca0376.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 376.67 kB
Formato Adobe PDF
376.67 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact