Abstract: In this paper we prove an integral representation formula for the relaxed functional of a scalar non parametric integral of the Calculus of Variations. Similar results were obtained by Dal Maso under the key assumption that the integrand is coercive in the gradient variable. Here we show that the same integral representation holds for a wide class of non coercive integrands, including for example the strictly convex ones.
On the relaxation on BV of certain non coercive integral functionals / F. MAGGI. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 10:(2003), pp. 477-489.
On the relaxation on BV of certain non coercive integral functionals
MAGGI, FRANCESCO
2003
Abstract
Abstract: In this paper we prove an integral representation formula for the relaxed functional of a scalar non parametric integral of the Calculus of Variations. Similar results were obtained by Dal Maso under the key assumption that the integrand is coercive in the gradient variable. Here we show that the same integral representation holds for a wide class of non coercive integrands, including for example the strictly convex ones.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Maggijca0376.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
376.67 kB
Formato
Adobe PDF
|
376.67 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.