ABSTRACT: We consider a jump-diffusion Levy model, which is often used in financial and risk theory applications. Using discrete observations of the process, we consider a threshold estimator of the diffusion coefficient, and we show that it satisfies a large deviation principle. That gives us both the strong consistency of the estimator and an accurate measure of the estimation error. Rivista di classe 4 per il GEV Area 1 del VQR 2004-2010

Large deviation principle for an estimator of the diffusion coefficient in a jump diffusion process / C. MANCINI. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - STAMPA. - 78:(2008), pp. 869-879.

Large deviation principle for an estimator of the diffusion coefficient in a jump diffusion process

MANCINI, CECILIA
2008

Abstract

ABSTRACT: We consider a jump-diffusion Levy model, which is often used in financial and risk theory applications. Using discrete observations of the process, we consider a threshold estimator of the diffusion coefficient, and we show that it satisfies a large deviation principle. That gives us both the strong consistency of the estimator and an accurate measure of the estimation error. Rivista di classe 4 per il GEV Area 1 del VQR 2004-2010
2008
78
869
879
C. MANCINI
File in questo prodotto:
File Dimensione Formato  
STAPRO4745.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 419.39 kB
Formato Adobe PDF
419.39 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact