ABSTRACT: We consider a jump-diffusion Levy model, which is often used in financial and risk theory applications. Using discrete observations of the process, we consider a threshold estimator of the diffusion coefficient, and we show that it satisfies a large deviation principle. That gives us both the strong consistency of the estimator and an accurate measure of the estimation error. Rivista di classe 4 per il GEV Area 1 del VQR 2004-2010
Large deviation principle for an estimator of the diffusion coefficient in a jump diffusion process / C. MANCINI. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - STAMPA. - 78:(2008), pp. 869-879.
Large deviation principle for an estimator of the diffusion coefficient in a jump diffusion process
MANCINI, CECILIA
2008
Abstract
ABSTRACT: We consider a jump-diffusion Levy model, which is often used in financial and risk theory applications. Using discrete observations of the process, we consider a threshold estimator of the diffusion coefficient, and we show that it satisfies a large deviation principle. That gives us both the strong consistency of the estimator and an accurate measure of the estimation error. Rivista di classe 4 per il GEV Area 1 del VQR 2004-2010File | Dimensione | Formato | |
---|---|---|---|
STAPRO4745.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
419.39 kB
Formato
Adobe PDF
|
419.39 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.