The organization of the cortical projections of the ventral medial thalamic nucleus (VM) was studied in the cat with retrograde tracers. The extent of the VM-cortical projections was first investigated with horseradish peroxidase injected in different cortical fields. The results obtained in the experiments indicated that the main target of VM efferents is represented by a large territory anterior to the cruciate sulcus involving area 6 and the gyrus proreus and extending into the anterior part of the medial cortical surface. The afferents to these precruciate fields arise from throughout the VM. In addition, the lateral third of VM projects upon the lateral precruciate cortex that is coextensive with the precruciate part of area 4, whereas VM efferents do not extend into the posterior sigmoid gyrus. A second major target of VM efferents is represented by the insular cortex in the anterior sylvian gyrus. VM projections also reach the prepyriform cortex and the cingulate gyrus. An anteroposterior decrease of density was found in the VM-cingulate projections. Sparse VM projections reach the temporal cortex, the adjacent posterior sylvian and ectosylvian fields, and the anterior ectosylvian gyrus. No VM projections were found either upon the visual areas 17 and 18 or upon the primary auditory cortex. The interrelations between some VM-cortical cell populations and their divergent collateralization were studied by using double retrograde labeling with fluorescent tracers. The results of these experiments demonstrated that a relatively high number (at least 20%) of VM cells projecting to the insula are also connected to the precruciate fields by means of axon collaterals. This finding indicates that VM is a highly collateralized structure of the cat's thalamus. Very few branched cells were found in the other combinations of cortical fields here examined (precruciate vs. posterior sylvian fields, lateral precruciate vs. proreal cortex, anterior vs. posterior cingulate fields). Altogether these data indicate that VM branched cells preferentially interconnect the two main cortical targets of the nucleus, i.e., precruciate and insular fields. The results of the present study are discussed in regard to the literature on the VM projections in the rat and the previously available data in the cat, to the afferent VM organization in the cat, to the relationships between VM and the nucleus submedius, and to the anatomical and functional role of VM in relation to the so-called "nonspecific" thalamocortical system.

Multiple cortical targets of one thalamic nucleus: the projections of the ventral medial nucleus in the cat studied with retrograde tracers / D. MINCIACCHI; M .BENTIVOGLIO; M. MOLINARI; K. KULTAS-ILINSKY; I.A. ILINSKY; G. MACCHI. - In: JOURNAL OF COMPARATIVE NEUROLOGY. - ISSN 0021-9967. - STAMPA. - 252:(1986), pp. 106-129.

Multiple cortical targets of one thalamic nucleus: the projections of the ventral medial nucleus in the cat studied with retrograde tracers.

MINCIACCHI, DIEGO;
1986

Abstract

The organization of the cortical projections of the ventral medial thalamic nucleus (VM) was studied in the cat with retrograde tracers. The extent of the VM-cortical projections was first investigated with horseradish peroxidase injected in different cortical fields. The results obtained in the experiments indicated that the main target of VM efferents is represented by a large territory anterior to the cruciate sulcus involving area 6 and the gyrus proreus and extending into the anterior part of the medial cortical surface. The afferents to these precruciate fields arise from throughout the VM. In addition, the lateral third of VM projects upon the lateral precruciate cortex that is coextensive with the precruciate part of area 4, whereas VM efferents do not extend into the posterior sigmoid gyrus. A second major target of VM efferents is represented by the insular cortex in the anterior sylvian gyrus. VM projections also reach the prepyriform cortex and the cingulate gyrus. An anteroposterior decrease of density was found in the VM-cingulate projections. Sparse VM projections reach the temporal cortex, the adjacent posterior sylvian and ectosylvian fields, and the anterior ectosylvian gyrus. No VM projections were found either upon the visual areas 17 and 18 or upon the primary auditory cortex. The interrelations between some VM-cortical cell populations and their divergent collateralization were studied by using double retrograde labeling with fluorescent tracers. The results of these experiments demonstrated that a relatively high number (at least 20%) of VM cells projecting to the insula are also connected to the precruciate fields by means of axon collaterals. This finding indicates that VM is a highly collateralized structure of the cat's thalamus. Very few branched cells were found in the other combinations of cortical fields here examined (precruciate vs. posterior sylvian fields, lateral precruciate vs. proreal cortex, anterior vs. posterior cingulate fields). Altogether these data indicate that VM branched cells preferentially interconnect the two main cortical targets of the nucleus, i.e., precruciate and insular fields. The results of the present study are discussed in regard to the literature on the VM projections in the rat and the previously available data in the cat, to the afferent VM organization in the cat, to the relationships between VM and the nucleus submedius, and to the anatomical and functional role of VM in relation to the so-called "nonspecific" thalamocortical system.
1986
252
106
129
D. MINCIACCHI; M .BENTIVOGLIO; M. MOLINARI; K. KULTAS-ILINSKY; I.A. ILINSKY; G. MACCHI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/253850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact