Abstract. Let D be a bounded strongly convex domain in the complex space of dimension n. For a fixed point p ∈ ∂D, we consider the solution of a homogeneous complex Monge-Ampère equation with a simple pole at p. We prove that such a solution enjoys many properties of the classical Poisson kernel in the unit disc and thus deserves to be called the pluricomplex Poisson kernel of D with pole at p. In particular we discuss extremality properties (such as a generalization of the classical Phragmen-Lindelof theorem), relations with the pluricomplex Green function of D, uniqueness in terms of the associated foliation and boundary behaviors. Finally, using such a kernel we obtain explicit reproducing formulas for plurisubharmonic functions.

The pluricomplex Poisson Kernel for strongly convex domain / G. PATRIZIO; F. BRACCI; S. TRAPANI. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 361:(2009), pp. 979-1005. [10.1090/S0002-9947-08-04549-2]

The pluricomplex Poisson Kernel for strongly convex domain.

PATRIZIO, GIORGIO;
2009

Abstract

Abstract. Let D be a bounded strongly convex domain in the complex space of dimension n. For a fixed point p ∈ ∂D, we consider the solution of a homogeneous complex Monge-Ampère equation with a simple pole at p. We prove that such a solution enjoys many properties of the classical Poisson kernel in the unit disc and thus deserves to be called the pluricomplex Poisson kernel of D with pole at p. In particular we discuss extremality properties (such as a generalization of the classical Phragmen-Lindelof theorem), relations with the pluricomplex Green function of D, uniqueness in terms of the associated foliation and boundary behaviors. Finally, using such a kernel we obtain explicit reproducing formulas for plurisubharmonic functions.
2009
361
979
1005
G. PATRIZIO; F. BRACCI; S. TRAPANI
File in questo prodotto:
File Dimensione Formato  
Pluripoisson2(Transactions)(3).pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 405.16 kB
Formato Adobe PDF
405.16 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/255514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact