We study complex geodesics for complex Finsler metrics and prove a uniqueness theorem for them. The results obtained are applied to the case of the Kobayashi metric for which, under suitable hypotheses, we describe the exponential map and the relationship between the indicatrix and small geodesic balls. Finally, exploiting the connection between intrinsic metrics and the complex Monge-Ampère equation, we give characterizations for circular domains in ℂ n .

Uniqueness of complex geodesics and characterization circular domains / G. PATRIZIO; M. ABATE. - In: MANUSCRIPTA MATHEMATICA. - ISSN 0025-2611. - STAMPA. - 74:(1992), pp. 277-297. [10.1007/BF02567672]

Uniqueness of complex geodesics and characterization circular domains

PATRIZIO, GIORGIO;
1992

Abstract

We study complex geodesics for complex Finsler metrics and prove a uniqueness theorem for them. The results obtained are applied to the case of the Kobayashi metric for which, under suitable hypotheses, we describe the exponential map and the relationship between the indicatrix and small geodesic balls. Finally, exploiting the connection between intrinsic metrics and the complex Monge-Ampère equation, we give characterizations for circular domains in ℂ n .
1992
74
277
297
G. PATRIZIO; M. ABATE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/255517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 5
social impact