Femtosecond infrared (IR) two-color pump-probe experiments were used to investigate the nonlinear response of the D2O stretching vibration in weakly hydrated dimyristoyl-phosphatidylcholine (DMPC) membrane fragments. The vibrational lifetime is comparable to or longer than that in bulk D2O and is frequency dependent, as it decreases with increasing probe frequency. Also, the lifetime increases when the water content of the sample is lowered. The measured lifetimes range between 903 and 390 fs. A long-lived spectral feature grows in following the excitation and is attributed to photoinduced D-bond breaking. The photoproduct spectrum differs from the steady state difference Fourier transform infrared (FTIR) spectrum, showing that the full thermalization of the excitation energy happens on a much longer time scale than the time interval considered (12 ps). Further evidence of the inhomogeneous character of the water residing in the polar region of the bilayer comes from the spectral anisotropy. The water molecules absorbing on the low frequency side of the absorption band show no decay at all of the anisotropy, while an ultrafast partial decay appears when the high frequency side of the spectrum is probed. The overall behavior differs remarkably from that observed with similar experiments in bulk water and in water segregated in inverse micelles. In weakly hydrated phospholipid membranes, water molecules are present mostly as isolated species, prevalently involved in strong, rigid, and persistent hydrogen bonds with the polar groups of the bilayer molecules. This specific character appears to have a direct effect on the structural stability and thermal properties of the membrane.

Heterogeneity of Water at the Phospholipid Membrane Interface / V. VOLKOV ; D. PALMER; R. RIGHINI. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - STAMPA. - 111:(2007), pp. 1377-1383.

Heterogeneity of Water at the Phospholipid Membrane Interface

RIGHINI, ROBERTO
2007

Abstract

Femtosecond infrared (IR) two-color pump-probe experiments were used to investigate the nonlinear response of the D2O stretching vibration in weakly hydrated dimyristoyl-phosphatidylcholine (DMPC) membrane fragments. The vibrational lifetime is comparable to or longer than that in bulk D2O and is frequency dependent, as it decreases with increasing probe frequency. Also, the lifetime increases when the water content of the sample is lowered. The measured lifetimes range between 903 and 390 fs. A long-lived spectral feature grows in following the excitation and is attributed to photoinduced D-bond breaking. The photoproduct spectrum differs from the steady state difference Fourier transform infrared (FTIR) spectrum, showing that the full thermalization of the excitation energy happens on a much longer time scale than the time interval considered (12 ps). Further evidence of the inhomogeneous character of the water residing in the polar region of the bilayer comes from the spectral anisotropy. The water molecules absorbing on the low frequency side of the absorption band show no decay at all of the anisotropy, while an ultrafast partial decay appears when the high frequency side of the spectrum is probed. The overall behavior differs remarkably from that observed with similar experiments in bulk water and in water segregated in inverse micelles. In weakly hydrated phospholipid membranes, water molecules are present mostly as isolated species, prevalently involved in strong, rigid, and persistent hydrogen bonds with the polar groups of the bilayer molecules. This specific character appears to have a direct effect on the structural stability and thermal properties of the membrane.
2007
111
1377
1383
V. VOLKOV ; D. PALMER; R. RIGHINI
File in questo prodotto:
File Dimensione Formato  
Heterogeneity.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 149.28 kB
Formato Adobe PDF
149.28 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/255699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact