In this paper we study the Navier--Stokes equations with a Navier-type boundary condition that has been proposed as an alternative to common near wall models. The boundary condition we study, involving a linear relation between the tangential part of the velocity and the tangential part of the Cauchy stress-vector, is related to the vorticity seeding model introduced in the computational approach to turbulent flows. The presence of a pointwise nonvanishing normal flux may be considered as a tool to avoid the use of phenomenological near wall models in the boundary layer region. Furthermore, the analysis of the problem is suggested by recent advances in the study of large eddy simulation. In the two-dimensional case, by using rather elementary tools, we prove existence and uniqueness of weak solutions. The asymptotic behavior of the solution, with respect to the averaging radius $\delta,$ is also studied. In particular, we prove convergence of the solutions toward the corresponding solutions of the Navier--Stokes equations with the usual no-slip boundary conditions, as the small parameter $\delta$ goes to zero.

On the existence and uniqueness of weak solutions for a vorticity seeding model / L. BERSELLI; M. ROMITO. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 37, no. 6:(2006), pp. 1780-1799. [10.1137/04061249X]

On the existence and uniqueness of weak solutions for a vorticity seeding model

ROMITO, MARCO
2006

Abstract

In this paper we study the Navier--Stokes equations with a Navier-type boundary condition that has been proposed as an alternative to common near wall models. The boundary condition we study, involving a linear relation between the tangential part of the velocity and the tangential part of the Cauchy stress-vector, is related to the vorticity seeding model introduced in the computational approach to turbulent flows. The presence of a pointwise nonvanishing normal flux may be considered as a tool to avoid the use of phenomenological near wall models in the boundary layer region. Furthermore, the analysis of the problem is suggested by recent advances in the study of large eddy simulation. In the two-dimensional case, by using rather elementary tools, we prove existence and uniqueness of weak solutions. The asymptotic behavior of the solution, with respect to the averaging radius $\delta,$ is also studied. In particular, we prove convergence of the solutions toward the corresponding solutions of the Navier--Stokes equations with the usual no-slip boundary conditions, as the small parameter $\delta$ goes to zero.
2006
37, no. 6
1780
1799
L. BERSELLI; M. ROMITO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/255836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 13
social impact