We prove a Brunn–Minkowski-type inequality for the eigenvalue of the Monge–Ampère operator. The equality case is explicitly described too. The main device of the proof is a notion of addition for convex functions, called infimal convolution, which corresponds to the Minkowski addition of the graphs of the involved functions.
A Brunn-Minkowski inequality for the Monge-Ampère eigenvalue / P. SALANI. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 194:(2005), pp. 67-86. [10.1016/j.aim.2004.05.011]
A Brunn-Minkowski inequality for the Monge-Ampère eigenvalue
SALANI, PAOLO
2005
Abstract
We prove a Brunn–Minkowski-type inequality for the eigenvalue of the Monge–Ampère operator. The equality case is explicitly described too. The main device of the proof is a notion of addition for convex functions, called infimal convolution, which corresponds to the Minkowski addition of the graphs of the involved functions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SalaniAIM.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
288.43 kB
Formato
Adobe PDF
|
288.43 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.