We study the class Q of quasiconvex functions (i.e. functions with convex sublevel sets), by associating to every quasi convex function u a function H :R^n × R→R ∪ {±∞}, such that H(X, t) is nondecreasing in t and sublinear in X: for every fixed t , the function H(·, t) is nothing else than the support function of the sublevel set {x ∈ R^n: u(x)<t}. When u is suitably regular, we establish an exact relation between the Hessian matrices of u and H; this allows us to find explicit formulae to write the k-Hessian operators of u in terms of H. Then we investigate on Minkowski addition of quasiconvex functions.
On the Hessian matrix and Minkowski addition of quasiconvex functions / M. LONGINETTI; P. SALANI. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 88:(2007), pp. 276-292. [10.1016/j.matpur.2007.06.007]
On the Hessian matrix and Minkowski addition of quasiconvex functions
LONGINETTI, MARCO;SALANI, PAOLO
2007
Abstract
We study the class Q of quasiconvex functions (i.e. functions with convex sublevel sets), by associating to every quasi convex function u a function H :R^n × R→R ∪ {±∞}, such that H(X, t) is nondecreasing in t and sublinear in X: for every fixed t , the function H(·, t) is nothing else than the support function of the sublevel set {x ∈ R^n: u(x)File | Dimensione | Formato | |
---|---|---|---|
MATPUR2245.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
375.27 kB
Formato
Adobe PDF
|
375.27 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.