The analysis of data taken during the C7 VIRGO commissioning run showed strong deviations from Gaussian noise. In this work, we explore a family of distributions, derived from the hypothesis that heavy tails are an effect of a particular kind of nonstationarity, heterocedasticity (i.e. nonuniform variance), that appear to fit VIRGO noise better than a model based on the assumption of Gaussian noise. To estimate the parameters of the noise process (including the heterogeneous variance) we derived an expectation-maximization algorithm. We show the consequences of non-Gaussianity on the fitting of autoregressive filters and on the derivation of test statistics for matched filter operation. Finally, we apply the new noise model to the fitting of an autoregressive filter for whitening of data.
Normal/independent noise in VIRGO data / F ACERNESE; P AMICO; M ALSHOURBAGY; F ANTONUCCI; S AOUDIA; S AVINO; D BABUSCI; G BALLARDIN; F BARONE; L BARSOTTI; M BARSUGLIA; F BEAUVILLE; S BIGOTTA; S BIRINDELLI; M A BIZOUARD; C BOCCARA; F BONDU; L BOSI; C BRADASCHIA; S BRACCINI; A BRILLET; V BRISSON; L BROCCO; D BUSKULIC; E CALLONI; E CAMPAGNA; F CAVALIER; R CAVALIERI; G CELLA; E CESARINI; E CHASSANDE-MOTTIN; C CORDA; F COTTONE; A-C CLAPSON; F CLEVA; J-P COULON; E CUOCO; A DARI; V DATTILO; M DAVIER; R DE ROSA; L DI FIORE; A DI VIRGILIO; B DUJARDIN; A ELEUTERI; D ENARD; I FERRANTE; F FIDECARO; I FIORI; R FLAMINIO; J-D FOURNIER; O FRANCOIS; S FRASCA; F FRASCONI; A FREISE; L GAMMAITONI; F GARUFI; A GENNAI; A GIAZOTTO; G GIORDANO; L GIORDANO; R GOUATY; D GROSJEAN; G GUIDI; S HEBRI; H HEITMANN; P HELLO; L HOLLOWAY; S KARKAR; S KRECKELBERGH; P LA PENNA; M LAVAL; N LEROY; N LETENDRE; M LORENZINI; V LORIETTE; M LOUPIAS; G LOSURDO; J-M MACKOWSKI; E MAJORANA; C N MAN; M MANTOVANI; F MARCHESONI; F MARION; J MARQUE; F MARTELLI; A MASSEROT; M MAZZONI; L MILANO; C MOINS; J MOREAU; N MORGADO; B MOURS; A PAI; C PALOMBA; F PAOLETTI; S PARDI; A PASQUALETTI; R PASSAQUIETI; D PASSUELLO; B PERNIOLA; F PIERGIOVANNI; L PINARD; R POGGIANI; M PUNTURO; P PUPPO; K QIPIANI; P RAPAGNANI; V REITA; A REMILLIEUX; F RICCI; I RICCIARDI; P RUGGI; G RUSSO; S SOLIMENO; A SPALLICCI; R. STANGA; R TADDEI; M TONELLI; A TONCELLI; E TOURNEFIER; F TRAVASSO; G VAJENTE; D VERKINDT; F VETRANO; A VICER; J-Y VINET; H VOCCA; M YVERT AND Z ZHANG. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. - STAMPA. - 23:(2006), pp. S829-S836.
Normal/independent noise in VIRGO data
MAZZONI, MASSIMO;STANGA, RUGGERO;
2006
Abstract
The analysis of data taken during the C7 VIRGO commissioning run showed strong deviations from Gaussian noise. In this work, we explore a family of distributions, derived from the hypothesis that heavy tails are an effect of a particular kind of nonstationarity, heterocedasticity (i.e. nonuniform variance), that appear to fit VIRGO noise better than a model based on the assumption of Gaussian noise. To estimate the parameters of the noise process (including the heterogeneous variance) we derived an expectation-maximization algorithm. We show the consequences of non-Gaussianity on the fitting of autoregressive filters and on the derivation of test statistics for matched filter operation. Finally, we apply the new noise model to the fitting of an autoregressive filter for whitening of data.File | Dimensione | Formato | |
---|---|---|---|
0264-9381_23_19_S21.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
253.63 kB
Formato
Adobe PDF
|
253.63 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.