In a recent work, we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. In this paper we show how the results from the above-mentioned work can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose spectrum is not necessarily real.

Non commutative functional calculus: unbounded operators / Colombo, Fabrizio; Gentili, Graziano; Sabadini, Irene; Struppa, Daniele C.. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - STAMPA. - 60:(2010), pp. 251-259. [10.1016/j.geomphys.2009.09.011]

Non commutative functional calculus: unbounded operators

GENTILI, GRAZIANO;
2010

Abstract

In a recent work, we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. In this paper we show how the results from the above-mentioned work can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose spectrum is not necessarily real.
2010
60
251
259
Colombo, Fabrizio; Gentili, Graziano; Sabadini, Irene; Struppa, Daniele C.
File in questo prodotto:
File Dimensione Formato  
UNBOUNDED.pdf

Accesso chiuso

Descrizione: UNBOUNDED.pdf
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 527.51 kB
Formato Adobe PDF
527.51 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/261809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact