In a recent work, we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. In this paper we show how the results from the above-mentioned work can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose spectrum is not necessarily real.
Non commutative functional calculus: unbounded operators / Colombo, Fabrizio; Gentili, Graziano; Sabadini, Irene; Struppa, Daniele C.. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - STAMPA. - 60:(2010), pp. 251-259. [10.1016/j.geomphys.2009.09.011]
Non commutative functional calculus: unbounded operators
GENTILI, GRAZIANO;
2010
Abstract
In a recent work, we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. In this paper we show how the results from the above-mentioned work can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose spectrum is not necessarily real.File | Dimensione | Formato | |
---|---|---|---|
UNBOUNDED.pdf
Accesso chiuso
Descrizione: UNBOUNDED.pdf
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
527.51 kB
Formato
Adobe PDF
|
527.51 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.