Let U be a complex space of complex dimension n ≥ 2, P a point of U, π : Ũ → U a modification such that Ũ is nonsingular and D = π-1 (P) is a divisor with normal crossings. A Bochner–Martinelli form on U\{P} is a -closed differential form ω on Ũ\D, of pure type (n,n - 1), logarithmic along D. Such form detects a cohomology class of H2n - 1 (U\{P},ℂ) on the singular space U\{P}. Thanks to a general residue formula we prove that the forms ω give rise to an integral formula of Bochner–Martinelli type for holomorphic functions. If U satisfies the following assumption that {there exists a compact complex space X bimeromorphic to a Kähler manifold, and a closed subspace T ⊂ X, such that X\T = U (an affine, or a quasi-projective variety satisfies the above property), we relate Bochner–Martinelli forms to the mixed Hodge structure carried by H2n-1 (U\{P},ℂ). Most of our results hold for complex spaces which are not Stein.

Bochner-Martinelli formulas on singular complex spaces / V. ANCONA; B. GAVEAU. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - STAMPA. - 21:(2010), pp. 225-253. [10.1142/S0129167X10005994]

Bochner-Martinelli formulas on singular complex spaces

ANCONA, VINCENZO;
2010

Abstract

Let U be a complex space of complex dimension n ≥ 2, P a point of U, π : Ũ → U a modification such that Ũ is nonsingular and D = π-1 (P) is a divisor with normal crossings. A Bochner–Martinelli form on U\{P} is a -closed differential form ω on Ũ\D, of pure type (n,n - 1), logarithmic along D. Such form detects a cohomology class of H2n - 1 (U\{P},ℂ) on the singular space U\{P}. Thanks to a general residue formula we prove that the forms ω give rise to an integral formula of Bochner–Martinelli type for holomorphic functions. If U satisfies the following assumption that {there exists a compact complex space X bimeromorphic to a Kähler manifold, and a closed subspace T ⊂ X, such that X\T = U (an affine, or a quasi-projective variety satisfies the above property), we relate Bochner–Martinelli forms to the mixed Hodge structure carried by H2n-1 (U\{P},ℂ). Most of our results hold for complex spaces which are not Stein.
2010
21
225
253
V. ANCONA; B. GAVEAU
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/261880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact