The paper analyzes a model in surface growth where the uniqueness of weak solutions seems to be out of reach. We prove existence of a weak martingale solution satisfying energy inequalities and having the Markov property. Furthermore, under nondegeneracy conditions on the noise, we establish that any such solution is strong Feller and has a unique invariant measure. (preprint elettronico: http://arxiv.org/abs/math.PR/0611021)

Markovianity and ergodicity for a surface growth PDE / D. BLOEMKER; F. FLANDOLI; M. ROMITO. - In: ANNALS OF PROBABILITY. - ISSN 0091-1798. - STAMPA. - vol. 37, nr. 1:(2009), pp. 275-313. [doi:10.1214/08-AOP403]

Markovianity and ergodicity for a surface growth PDE

ROMITO, MARCO
2009

Abstract

The paper analyzes a model in surface growth where the uniqueness of weak solutions seems to be out of reach. We prove existence of a weak martingale solution satisfying energy inequalities and having the Markov property. Furthermore, under nondegeneracy conditions on the noise, we establish that any such solution is strong Feller and has a unique invariant measure. (preprint elettronico: http://arxiv.org/abs/math.PR/0611021)
2009
vol. 37, nr. 1
275
313
D. BLOEMKER; F. FLANDOLI; M. ROMITO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/261913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact