Suppression of invasive phenotype is essential in developing new therapeutic tools to treat prostate cancer (PC). Evidence indicates that androgen-dependent (AD) prostate cancer cells are characterized by a lower malignant phenotype. We have demonstrated that transfection with an androgen receptor (AR) expression vector of the androgen-independent (AI) prostate cancer cell line PC3 decreases invasion of these cells through modulation of alpha6beta4 integrin expression, indicating a genotropic effect of androgens in inhibiting invasion ability of AD PC cells. Later on, we have shown that also a non-genotropic mechanism is involved in such an effect. By using immunoconfocal fluorescent microscopy, we demonstrated that AR in PC3-AR cells co-localizes with the EGFR receptors (EGFR) in PC3-AR cells. Co-immunoprecipitation studies both in PC3-AR cells and in the AD cell line LNCaP that physiologically express both receptors, confirm the occurrence of an interaction between of the two proteins. In PC3-AR cells, we demonstrated a disruption of EGFR signalling properties (reduced EGF-induced EGFR autotransphosphorylation, reduced EGF-stimulated PI3K activity as well as EGFR-PI3K interaction) contributing to the lower invasive phenotype of these cells. In another study, we investigated the effects of a new Vitamin D analogue, BXL628, on invasion in response to KGF in the androgen-independent PC cell line DU145. We found that the compound was able to reduce proliferation and invasion of the cells in response to the growth factor. In addition, we found that KGF-induced autotransphosphorylation of KGF receptor (KGFR) and PI3K activation were suppressed after short-term (5min) pre-treatment with the analogue before addition of KGF. Collectively, these studies demonstrate that a non-genotropic effect due to a direct interaction of the androgen receptor with EGFR and to a rapid effect of a Vitamin D agonist on KGFR may disrupt signalling of GF leading to decreased tumorigenicity and a less malignant phenotype of PC cells in vitro.

Non-genomic effects of the androgen receptor and vitamin D agonist are involved in suppressing invasive phenotype of prostate cancer cells / L. BONACCORSI; S. MARCHIANI; P. FERRUZZI; M. MURATORI; C. CRESCIOLI; G. FORTI; M. MAGGI; E. BALDI. - In: STEROIDS. - ISSN 0039-128X. - STAMPA. - 71(4):(2006), pp. 304-309.

Non-genomic effects of the androgen receptor and vitamin D agonist are involved in suppressing invasive phenotype of prostate cancer cells

BONACCORSI, LORELLA;MARCHIANI, SARA;MURATORI, MONICA;CRESCIOLI, CLARA;FORTI, GIANNI;MAGGI, MARIO;BALDI, ELISABETTA
2006

Abstract

Suppression of invasive phenotype is essential in developing new therapeutic tools to treat prostate cancer (PC). Evidence indicates that androgen-dependent (AD) prostate cancer cells are characterized by a lower malignant phenotype. We have demonstrated that transfection with an androgen receptor (AR) expression vector of the androgen-independent (AI) prostate cancer cell line PC3 decreases invasion of these cells through modulation of alpha6beta4 integrin expression, indicating a genotropic effect of androgens in inhibiting invasion ability of AD PC cells. Later on, we have shown that also a non-genotropic mechanism is involved in such an effect. By using immunoconfocal fluorescent microscopy, we demonstrated that AR in PC3-AR cells co-localizes with the EGFR receptors (EGFR) in PC3-AR cells. Co-immunoprecipitation studies both in PC3-AR cells and in the AD cell line LNCaP that physiologically express both receptors, confirm the occurrence of an interaction between of the two proteins. In PC3-AR cells, we demonstrated a disruption of EGFR signalling properties (reduced EGF-induced EGFR autotransphosphorylation, reduced EGF-stimulated PI3K activity as well as EGFR-PI3K interaction) contributing to the lower invasive phenotype of these cells. In another study, we investigated the effects of a new Vitamin D analogue, BXL628, on invasion in response to KGF in the androgen-independent PC cell line DU145. We found that the compound was able to reduce proliferation and invasion of the cells in response to the growth factor. In addition, we found that KGF-induced autotransphosphorylation of KGF receptor (KGFR) and PI3K activation were suppressed after short-term (5min) pre-treatment with the analogue before addition of KGF. Collectively, these studies demonstrate that a non-genotropic effect due to a direct interaction of the androgen receptor with EGFR and to a rapid effect of a Vitamin D agonist on KGFR may disrupt signalling of GF leading to decreased tumorigenicity and a less malignant phenotype of PC cells in vitro.
2006
71(4)
304
309
L. BONACCORSI; S. MARCHIANI; P. FERRUZZI; M. MURATORI; C. CRESCIOLI; G. FORTI; M. MAGGI; E. BALDI
File in questo prodotto:
File Dimensione Formato  
Bonaccorsi et al, Steroids 2006.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 161.72 kB
Formato Adobe PDF
161.72 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/307011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact