Myotonic dystrophy is a dominantly inherited clinically variable multisystemic disorder, and has been found to be caused by heterozygosity for a trinucleotide repeat expansion mutation in the 3' untranslated region of a protein kinase gene (DM kinase). The mechanisms by which the expanded repeat in DNA results in a dominant biochemical defect and the varied clinical phenotype, is not known. We have recently proposed a model where disease pathogenesis may occur at the RNA level in myotonic dystrophy: the mutant DM kinase RNA with the expansion mutation may disrupt cellular RNA metabolism in some general manner, as evidenced by defects in RNA processing of the normal DM kinase gene in heterozygous patients (dominant negative RNA mutation). Here we further test this hypothesis by measuring RNA metabolism of other genes in patient muscle biopsies (nine adult onset myotonic dystrophy patients, two congenital muscular dystrophy patients, four normal controls, and four myopathic controls). We focused on the insulin receptor gene because of the documented insulin resistance of DM patients. We show that there is a significant decrease in insulin receptor RNA in both total RNA and RNA polyA+ pools relative to normal and myopathic control muscles (P < 0.002), measured relative to both dystrophin RNA and muscle sodium channel RNA. We also show reductions in insulin receptor protein. Our results reinforce the concept of a generalized RNA metabolism defect in myotonic dystrophy, and offer a possible molecular mechanism for the increased insulin resistance observed in many myotonic dystrophy patients.
RNA Metabolism in Myotonic Dystrophy. RNA metabolism in myotonic dystrophy: patient muscle shows decreased insulinreceptor RNA and protein consistent with abnormal insulin resistance / A. MORRONE; E. PEGORARO; C. ANGELINI; E. ZAMMARCHI; G. MARCONI; E.P. HOFFMAN. - In: THE JOURNAL OF CLINICAL INVESTIGATION. - ISSN 0021-9738. - STAMPA. - 99(7):(1997), pp. 1691-1698. [10.1172/JCI119332]
RNA Metabolism in Myotonic Dystrophy. RNA metabolism in myotonic dystrophy: patient muscle shows decreased insulinreceptor RNA and protein consistent with abnormal insulin resistance.
MORRONE, AMELIA;ZAMMARCHI, ENRICO;MARCONI, GIAMPIERO;
1997
Abstract
Myotonic dystrophy is a dominantly inherited clinically variable multisystemic disorder, and has been found to be caused by heterozygosity for a trinucleotide repeat expansion mutation in the 3' untranslated region of a protein kinase gene (DM kinase). The mechanisms by which the expanded repeat in DNA results in a dominant biochemical defect and the varied clinical phenotype, is not known. We have recently proposed a model where disease pathogenesis may occur at the RNA level in myotonic dystrophy: the mutant DM kinase RNA with the expansion mutation may disrupt cellular RNA metabolism in some general manner, as evidenced by defects in RNA processing of the normal DM kinase gene in heterozygous patients (dominant negative RNA mutation). Here we further test this hypothesis by measuring RNA metabolism of other genes in patient muscle biopsies (nine adult onset myotonic dystrophy patients, two congenital muscular dystrophy patients, four normal controls, and four myopathic controls). We focused on the insulin receptor gene because of the documented insulin resistance of DM patients. We show that there is a significant decrease in insulin receptor RNA in both total RNA and RNA polyA+ pools relative to normal and myopathic control muscles (P < 0.002), measured relative to both dystrophin RNA and muscle sodium channel RNA. We also show reductions in insulin receptor protein. Our results reinforce the concept of a generalized RNA metabolism defect in myotonic dystrophy, and offer a possible molecular mechanism for the increased insulin resistance observed in many myotonic dystrophy patients.File | Dimensione | Formato | |
---|---|---|---|
morrone et al 1997 J Clin Invest.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
224.54 kB
Formato
Adobe PDF
|
224.54 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.